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We prove that the 2 n -neighbourhood in an n -dimensional digital space is decomposed into the 2(n − 1) - 

neighbourhoods in the mutually orthogonal (n − 1) -dimensional digital spaces. This decomposition and 

construction relation of the neighbourhoods and objects implies that morphological operations in an n - 

dimensional digital space can be computed as the union of one- and two-dimensional morphological 

operations on isothetic digital lines and planes intersecting with the digital object in the digital space. 
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. Introduction 

This paper develops a method to construct higher-dimensional

igital morphological operations from a collection of one- and

wo-dimensional set operations along digital isothetic lines and

n digital planes, respectively, in a space. Together with decom-

osition of digital objects, the decomposition of the neighbour-

ood shows that the neighbourhood-based operation in the higher-

imensional digital spaces can be decomposed into the union of

eighbourhood-based operations in the lower-dimensional digital

paces [1] . 

Decompositions of morphological operations, such as closing,

pening, the hit-or-miss transform, distance transform, bound-

ry detection, skeletonisation [2–4] and thinning, clarify that the

igher-dimensional operations are hierarchically constructed from

hose in the lower-dimensional spaces. Mathematically reformula-

ions of algorithms based on decomposition properties of morpho-

ogical operations bring theoretical bridge between mathematical
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escriptions and programme developments of morphological oper-

tions [5,6] . 

. Mathematical preliminaries 

Setting R 

n to be an n -dimensional Euclidean space, we express

ectors in R 

n as x = (x 1 , x 2 , · · · , x n ) � . Let Z be the set of all inte-

ers. The n -dimensional digital space Z 

n is set of all x for which all

 i are integers. Then, we define the voxel centred at points in Z 

n 

s a unit hypercube in R 

n . 

efinition 1. The voxels centred at the point y ∈ Z 

n in R 

n is 

 ( y ) = 

{ 
x | | x − y | ∞ 

≤ 1 

2 

} 
. (1) 

In this paper, we deal with the connectivity and adjacency of

he centroids of the voxels [7] , which are elements of Z 

n . 

The sets F �G and F �G such that 

 � G = 

⋃ 

y ∈ G 

( ⋃ 

x ∈ F 
{ x + y 

) 

, F � G = 

⋂ 

y ∈ G 

( ⋃ 

x ∈ F 
{ x + y } 

) 

(2) 

re called the Minkowski addition (dilation) and Minkowski sub-

raction (erosion) of F and G , respectively. The translation of F by
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Fig. 1. Digital point set and its decomposition. The multidirectional multislice de- 

composition of a digital point set in a three-dimensional digital space is shown. 
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a ∈ Z 

n is F ( a ) = 

⋃ 

x ∈ F { x + a } = F � { a } . The morphological opera-

tions and set operations fulfil the following relations [8] . 

Theorem 1. The Minkowski addition (dilation) and Minkowski sub-

traction(erosion), 

F � G = F � G , (3)

F � (G ∪ H ) = (F � G ) ∪ (F � H ) , (4)

F � (G ∪ H ) = (F � G ) ∩ (F � H ) (5)

are satisfied. 

The theorem derives the next corollary among morphological

operations and set operations. 

Corollary 1. If F ∩ G = ∅ , the equalities 

(F ∪ G ) � H = (F � H ) ∪ (G � H ) , (6)

(F ∪ G ) � H = (F � H ) ∪ (G � H ) (7)

are satisfied. 

Proof. Since Eq. (6) is straightforward from Eq. (4) , we prove

Eq. (7) . 

(F ∪ G ) � H = 

⋂ 

x ∈ H 
(F ∪ G )( x ) 

= { x + y |∀ x ∈ H , ∃ y ∈ (F ∪ G ) } 
= { x + y |∀ x ∈ H , ∃ y ∈ F } 

∪{ x + y |∀ x ∈ H , ∃ y ∈ G } 
= (F � H ) ∪ (G � H ) . 

�

Next, we define the multidirectional multislice decomposition

of a digital point F ⊂ Z 

n . 

Definition 2. For F ⊂ Z 

n , digital linear subspace is 

F k = { x | x ∈ F , x k = 0 } (8)

and the digital linear manifold is 

F kα = { x | x ∈ F k � { αe k } , α ∈ Z } . (9)

For α+ (k ) = max F ∩ F kα  = ∅ 

α and α−(k ) = min F ∩ F kα  = ∅ α, setting

N (k ) = { α| α−(k ) ≤ α ≤ α+ (k ) } , F k α satisfies the following property

on the multidirectional multislice decomposition. 

Property 1. A point set F ⊂ Z 

n is decomposed as F =
∪ 

n 
k =1 

(
∪ α∈N (k ) F kα

)
. 

This property derives the following lemma. 

Lemma 1. The hierarchical decomposition of the point sets is 

F k (l) α(l) = 

n −l ⋃ 

k (l)=1 

( ⋃ 

α(l) ∈N (k (l)) 

F k (l) α(l) 

) 

, (10)

for l = 0 , 1 , 2 , · · · , n − 1 . 

Proof. The relations 

F kα = 

n −1 ∪ 

l=1 

(
∪ 

β∈ N ( l ) 
F kα lβ

)
, F kα lβ = 

n −2 ∪ 

m =1 

(
∪ 

γ ∈ N ( m ) 
F kα lβ mγ

)
(11)

are satisfied. Hierarchical application of these relations leads

Eq. (10) . �
Fig. 1 shows the multidirectional multislice decomposition of a

igital point set in a three-dimensional digital space. 

For 

 = 

n ⋃ 

k =1 

⋃ 

α∈N (k ) 

F kα, G = 

n ⋃ 

k =1 

⋃ 

β∈N (k ) 

G lβ, (12)

he Minkowski addition (dilation) and Minkowski subtraction (ero-

ion) are 

 � G = 

( 

n ⋃ 

k =1 

⋃ 

α∈N (k ) 

F kα

) 

�

( 

n ⋃ 

k =1 

⋃ 

β∈N (k ) 

G kβ

) 

, (13)

 � G = 

( 

n ⋃ 

k =1 

⋃ 

α∈N (k ) 

F kα

) 

�

( 

n ⋃ 

k =1 

⋃ 

β∈N (k ) 

G kβ

) 

. (14)

sing Eqs. (6) and (7) , Eqs. (13) and (14) derive the following the-

rem. 

heorem 2. The Minkowski addition (dilation) and Minkowski sub-

raction (erosion) are computed as 

 � G = 

n ∪ 

k =1 
∪ 

γ ∈ N αβ ( k ) 
F kγ � G kγ , (15)

 � G = 

n ∪ 

k =1 
∪ 

γ ∈ N αβ ( k ) 
F kγ � G kγ , (16)

here N αβ (k ) = { γ | min (α−, β−) ≤ γ ≤ max (α+ , β+ ) } . 
Since the opening and closing are ( F �G ) �H and ( F �G ) �H , re-

pectively, theorem 2 implies the following corollary. 

orollary 2. The opening and closing satisfy the relations 

(F � G ) � H = 

n ⋃ 

k =1 

⋃ 

δ∈N αβγ (k ) 

(F kδ � G kδ ) � H kδ, (17)

( F � G ) � H = 

n ∪ 

k =1 
∪ 

δ∈ N αβγ ( k ) 
( F kδ � G kδ ) � H kδ, (18)

or N αβγ (k ) = { δ| min (α−, β−, γ−) ≤ δ ≤ max (α+ , β+ , γ+ ) } . 
Theorem 2 and Corollary 2 imply that all the Minkowski addi-

ion (dilation), the Minkowski subtraction (erosion), opening and

losing can be constructed from lower-dimensional ones. 

Using embedding operation defined bellow, we claify geometry

roperty of voxel union. 

efinition 3. The embedding of a point set F ∈ Z 

n into R 

n is F =
 x ∈ F V ( x ) . 

F is a union of voxels. 

We define the dual grid 

efinition 4. The dual grid [9,10] of Z 

n is D 

n = Z 

n 
�

{
1 
2 e 
}
, where

 = 

∑ n 
i =1 e i for e i = ( 

i −1 ︷ ︸︸ ︷ 
0 , 0 , · · · , 0 , 1 , 0 , 0 , · · · , 0) � . 

The embedded point set possesses the next property. 
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Fig. 2. Decomposition of a neighbourhood. The 8-neighbourhood in a four- 

dimensional digital space is decomposed into four mutually orthogonal 6- 

neighbourhoods in the three-dimensional digital spaces. 

(a) (b) (c)

Fig. 3. One-dimensional operations for a two-dimensional object. (a) Four- 

connected object on the digital plane. (b) Neighbourhood operations on the hor- 

izontal isothetic lines on the digital plane. (c) Neighbourhood operations on the 

vertical isothetic lines on the digital plane. 
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roperty 2. The polytope F is an isothetic Nef-polytope [11 , 12 , 13] ,

hich is a union of voxels connected by the faces of voxels. The ver-

ices of F lie on the dual grid D 

n . 

Since a sub-grid point p in the unit hypercube [0, 1] n is ex-

ressed as p = 

∑ n 
i =1 

α(i ) 
k 

e i , for α(i ) = 0 , 1 , 2 , · · · , n − 1 , where k is

n appropriate positive integer, we have the following definition. 

efinition 5. The k -sub-grid is 

 

n 
k = 

{ 

y | y = x + 

n ∑ 

i =1 

α(i ) 

k 
e i , x ∈ Z 

n 

} 

. (19) 

Using sub-grids, resampling of polytope is achieved. 

efinition 6. The resampling of F ∈ R 

n in the k -sub-grid Z 

n 
k 

is ex-

ressed as F k . 

. Neighbourhood operations 

The 2 n -neighbourhood of the origin in Z 

n is 

 

n = { x | | x i | = 1 , x = (x 1 , x 2 , · · · , x n ) 
� } . (20)

et N ( x ) = N 

n 
� { x } for x ∈ Z 

n . Using the neighbourhood, connec-

ivity of a pair of points a path between a pair of points in point

et connectivity of a pair of in a point set are defined. 

efinition 7. If y ∈ N ( x ) and x ∈ N ( y ), x and y are connected to

ach other. 

efinition 8. For y ∈ N ( x ) , if there exists at least one sequence

p i +1 ∈ N ( p i ) and p i ∈ N ( p i +1 ) for i = 1 , 2 , · · · k − 1 , the string { p } k 
i =1

s a path from p 1 := x to p 2 := y . 

efinition 9. For a pair of points x and y , if there exists a path

etween them, this pair is connected. 

Existence of paths defines connected components. 

efinition 10. For F ∈ Z 

n , if there exist at least a path between any

airs of points in F, F is a connected component. 

On the digital line Z , the neighbourhood N 

1 of the point 0 is

 

1 = {−1 , 1 } and a digital object is a string of points O = { k } m 

k = n 
or m > n and m, n ∈ Z . The dilation and erosion of a collection

f points are concatenation and elimination of points to both end-

oints of a string, respectively. 

From the linear neighbourhood in Z 

n such that 

 

1 
k = { x | | x k | = 1 , x i = 0 , i  = k } , (21)

e can construct N 

n as 

 

n = 

n ⋃ 

k =1 

N 

1 
k , (22) 

 

n = 

n ⋃ 

k =1 

N 

n −1 
k 

, N 

n −1 
k 

= N 

n \ N 

1 
k , (23)

 

n −1 
k 

= 

n −1 ⋃ 

l=1 

N 

n −2 
kl 

, N 

n −2 
kl 

= N 

n −1 
k 

\ N 

1 
l , (24)

 

n −2 
kl 

= 

n −2 ⋃ 

m =1 

N 

n −3 
klm 

, N 

n −3 
klm 

= N 

n −2 
kl 

\ N 

1 
m 

. (25)

quations (23), (24) and (25) imply the following property. 

roperty 3. A neighbourhood in a higher-dimensional digital space

an be decomposed into the union of neighbourhoods in lower-

imensional digital spaces. 
These recursive decompositions of the neighbourhoods derive

he following theorem. 

heorem 3. The 2n-neighbourhood in Z 

n is decomposed as 

N 

n −l 
k (1) k (2) ···k (l) 

= 

n −l ⋃ 

k (l)=1 

N 

n −(l+1) 
k (1) k (2) ···k (l+1) 

, 

 

n −(l+1) 
k (1) k (2) ···k (l+1) 

= N 

n −l 
k (1) k (2) ···k (l) 

\ N 

1 
k (l+1) , (26) 

or l = 0 , 1 , 2 , · · · n − 1 . 

Fig. 2 shows that the 8-neighbourhood in a four-dimensional

igital space is decomposed into four mutually orthogonal 6-

eighbourhoods in the three-dimensional digital spaces. 

Fig. 3 illustrates the neighbourhood operations on the horizon-

al and vertical isothetic lines on a digital plane. The connectivity

f the four connected object shown in (a) is computed by using

he connectivity on the horizontal and the vertical isothetic lines

n the digital plane. 

. Digital simplex, complex and object 

We first define digital simplices in Z 

n assuming 2 n -connectivity

f points. 

efinition 11. A digital k -simplex in Z 

n is the union of vertices of

nit k -cube in Z 

n for 1 ≤ k ≤ n assuming 2 n -connectivity of points.

The following procedure constructs digital simplices. 

emma 2. The recursive form 

 (0 ; n ) = { s n 0 | s n 0 = { 0 }} , 
S (k ; n ) = U 

({ s n k | s n k = s n k −1 ∪ (s n k −1 � e i ) , e i / ∈ s n k −1 } 
)

(27) 

onstructs digital k-simplex s n 
k 

containing the origin 0 for k ≥ 1, where

he operation U ({ · }) removes redundant elements in the set { · } . 
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Proof. The elements of S (1 ; n ) = {{ 0 , e 1 } , { 0 , e 2 } , · · · , { 0 , e n }} are

all digital 1-simplices containing the origin. Let S (k − 1 ; 0) to be

the collection of all digital (k − 1) -simplices containing the origin.

All of s n 
k −1 

∪ (s n 
k −1 

� e i ) for e i / ∈ s n 
k −1 

and s n 
k −1 

∈ S (k − 1 ; n ) are dig-

ital k -simplices containing the origin in Z 

n . �

Definition 12. For 0 ≤ k ≤ n , we call k of s n 
k 

the dimension of the

simplices. 

All digital simplex in Z 

n is s n 
k 
( p ) = s n 

k 
� { p } for p ∈ Z 

n . Digital

complices are defined through digital simplices. 

Definition 13. A connected digital complex is constructed as a

union of connected digital simplices. 

The following lemma shows geometric properties of connected

digital simplices. 

Lemma 3. The common set of a connecting pair of digital k-simplices

is a digital l-simplex for 0 ≤ l ≤ k − 1 . 

Proof. For q k = 

∑ k −l 
i =1 e i , s n 

k 
and s n 

k 
� { q k } is connected. Since s n 

k 
∩

(s n 
k 

� { q k } ) = s n 
l 
, the common set of two connecting digital sim-

plices is a collection of digital simplices. �

Since a digital 4-simplex in Z 

4 is the collection of all vertices of

the unit 4-cube containing the origin, a digital complex is 

C = s 4 4 ∪ s 4 4 ( e 1 ) 

= { 0 , e 1 , e 2 , e 3 , e 4 , e 12 , e 13 , e 14 , e 23 , e 24 , e 34 , 

e 123 , e 124 , e 134 , e 234 , e 1234 , 

e 1 2 2 , e 1 2 3 , e 1 2 4 , e 1 2 23 , e 1 2 24 , e 1 2 34 , e 1 2 234 } , (28)

where e αβ ···γ δ = e αβ ···γ + e δ, that is, e 12 ···n = e and e αα = e α2 =
2 e α . Furthermore, the interface of digital simplices in this digital

complex is 

f = s 4 4 ∩ s 4 4 ( e 1 ) = { e 1 , e 12 , e 13 , e 14 , e 123 , e 124 , e 134 , e 1234 } . (29)

Dimensions of the simplices in a digital complex define geo-

metrical hierarchy of connected components. 

Definition 14. We call a point set P ⊂ Z 

n a digital k -complex if

there exists a point set P k ⊂ P such that P = ∪ p ∈ P k s 
n 
k 
( p ) and does

not exist P k +1 ⊂ P such that P = ∪ p ∈ P k +1 
s n 

k +1 
( p ) . 

Definition 15. For a digital k -complex P , let 

Q = arg max 
A 

{ 

cad 

( ⋃ 

q ∈ A ⊂P 

s n k +1 ( q ) 

) } 

. (30)

We call R = P \ Q the k -wall, since R is a union of connecting dig-

ital k -simplices. 

These definitions imply that an object contains digital k -

simplices for k ≤ n − 1 as the connected components [1,14,15] . 

These geometric properties of digital simplices and complices

define thickness (or width) of digital objects. 

Definition 16. The thick digital n -complex is a union of digital

simplices connected by digital (n − 1) -simplices. 

The thickness of a digital complex defines the digital object. 

Definition 17. If the number of connected digital simplices in a

thick digital n -complex F is finite and if the complement of F is a

thick n -complex, we call F a digital object. 

Furthermore, we additionally define a thin digital object. 

Definition 18. We call a connected component of digital k -

simplices for k ≤ (n − 1) a thin digital object. 

Therefore, we have the next property. 
roperty 4. The minimum thickness of a thin digital object is one. 

On Z , a digital object is a finite union of finite intervals 

 = 

n ∪ 

i =1 
I i , I i = [ a i , b i ] , (31)

here a quadplet of integers a i , a i +1 , b i and b i +1 such that a i < a i +1

nd b i < b i +1 with the condition (a i +1 − b i ) ≥ 3 . 

The objects in R 

n is defined using union of voxels, whose cen-

res lie in a digital n -complices. 

efinition 19. For a thin object T in Z 

n , we call the embedding of

 in R 

n T = ∪ x ∈ T V ( x ) an imperfect voxel object. 

efinition 20. In R 

n , if the complement of voxel object P is an

mperfect voxel object, we call P a perfect voxel object. 

For the point set P = { x | ∑ n 
i =1 | x i | ≤ k, k ≥ 1 } the object P =

 

x ∈ P V ( x ) is an imperfect object, since the thicknesses of V ±ki =
 (±k e i ) , i = 1 , 2 , · · · , n are one. For the point set Q = { x || x i | ≤
, k ≥ 1 } the object Q = 

⋃ 

x ∈ Q V ( x ) is a perfect object since the

inimum thickness of Q is 2 k + 1 . 

. Digital boundary manifold 

We define the boundary of a point set in Z 

n . 

efinition 21. For a point set F , we call ∂ −F = F \ (F � N 

n ) and

 + F = (F � N 

n ) \ F the internal and external boundaries of F , re-

pectively. 

For the internal and external boundaries, we have the following

elations. 

emma 4. 

 \ (F � N 

n ) = 

n ⋃ 

k =1 

⋃ 

α∈N (k ) 

(
F kα \ (F kα � N 

n −1 
k 

) 
)
, (32)

(F � N 

n ) \ F = 

n ⋃ 

k =1 

⋃ 

α∈N (k ) 

(
(F kα � N 

n −1 
k 

) \ F kα
)
. (33)

This lemma derives the following theorem. 

heorem 4. The boundary ∂ ±F of an n-dimensional digital object F

s the union of its (n − 1) -dimensional boundaries. 

Theorem 4 allows us to construct ∂ ±F from ∂ ±F k α . Furthermore,

qs. (10) , (25) and (26) derive the relations 

 kα \ (F kα � N 

n −1 
k 

) = 

n −1 ⋃ 

l=1 

⋃ 

β∈N (l) 

(
F kα lβ \ (F kα lβ � N 

n −2 
kl 

) 
)
, (34)

F kα � N 

n −1 
k 

) \ F kα = 

n −1 ∪ 

l=1 
∪ 

β∈ N ( l ) 

((
F kα lβ � N 

n −2 
kl 

) \ F kα lβ

)
. (35)

ecomposing both a digital object and its neighbourhood by using

qs. (10) and (26) , respectively, we have the following theorem on

he hierarchical construction method of boundary. 

heorem 5. The boundary extraction methods are expressed in recur-

ive forms 
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a  
F k (l) α(l) \ (F k (l) α(l) � N 

n −l 
k (1) k (2) ···k (l) 

) 

= 

n −l ⋃ 

k (l+1)=1 

⋃ 

α(l+1) ∈N (k (l+1)) (
F k (l+1) α(l+1) \ (F k (l+1) α(l+1) � N 

n −l 
k (1) k (2) ···k (l+1) 

) 
)
, (36) 

(F k (l) α(l) � N 

n −l 
k (1) k (2) ···k (l) 

) \ F k (l) α(l) 

= 

n −l ⋃ 

k (l+1)=1 

⋃ 

α(l+1) ∈N (k (l+1)) (
(F k (l+1) α(l+1) � N 

n −l 
k (1) k (2) ···k (l+1) 

) \ F k (l+1) α(l+1) 

)
, (37) 

or the internal and external digital boundaries, where l =
 , 1 , 2 , · · · , n − 2 . 

Using these relations in Theorem 5 recursively, we can con-

truct the boundary-detection algorithm for n -dimensional digital

bjects from one-dimensional boundary detection algorithms. 

Let l (k, αk ) = { x | x = t e k + 

∑ 

i  = k αi e i } , for αi ∈ Z , where αk =
 αi } n i =1 , i  = k and F k, α = F 

⋂ 

l (k, αk ) . Then, by computing the one-

imensional internal and external boundaries ∂ −F k,α = F k,αk 
\

(F k,αk 
� N 

1 ) and ∂ + F k, αk 
= (F k, αk 

� N 

1 ) \ F k, αk 
, respectively, for all

 e k , αk } n k =1 
, we have the following theorem. 

heorem 6. The n-dimensional internal and external boundaries are

onstructed as ∂ −F = ∪ k ∪ αk 
∂ −F k,αk 

and ∂ + F = 

⋃ 

k 

⋃ 

αk 
∂ + F k, αk 

, re-

pectively. 

There exist 3 n points in the region 

 ( a ) = { x || x − a | ∞ 

≤ 1 } (38)

round a point a . For the point a ∈ Z 

n , if 

(∂ + F ∪ ∂ −F ) 
⋂ 

C (a ) = C (a ) , (39)

he point a lies on a locally flat manifold. Furthermore, if the point

 lies on a corner, the relation 

(∂ + F ∪ ∂ −F ) 
⋂ 

C (a ) ⊂ C (a ) (40)

s satisfied. Eqs. (38) , (39) and (40) imply the following theorem

n the geometric property of the corners. 

heorem 7. On the corner the relation 

 (∂ + F 
⋃ 

∂ −F ) 
⋂ 

C (a ) | < 3 

n (41)

s satisfied. 

The corner points of a digital object F may separate both the

nternal boundary ∂ −F and external boundary ∂ −F into portions.

sing the corners of the internal and external boundaries of the

omplement F of the digital object, we can refine the connectivity

f both the internal and external boundaries. 

efinition 22. If there exists at least one path between all pairs

f points on the internal and external boundaries, these bound-

ries are called the refined internal and external boundaries, re-

pectively. 

Let N 

2 
αβ

be the 2-dimensional neighbourhood on the digital

lane parallel to the plane Z 

2 
αβ

= { x | x = λe α + μe β, λ, μ ∈ Z } . Re-

nement of F by N 

2 
αβ

on the planes parallel to Z 

2 
αβ

yields a set

 αβ . For appropriate combinations of pairs α and β , successive ap-

lication of the refinement using the decomposed neighbourhood

 

2 
αβ

transforms an imperfect set to a perfect set. 
efinition 23. If a sequence of pairs {〈 αi , βi 〉} k i =1 
are used to pro-

uce a refined set, we define the order of the operation to trans-

orm a point set to a perfect object 

 := ( · · · ((F α1 β1 
) α2 β2 

) · · · ) αk βk 
(42)

nd the {〈 αi , βi 〉} k i =1 
is the minimum sequence, we call the set F

he k -refined set. 

heorem 8. In Z 

n , the maximum length of the sequence for refine-

ent is n − 1 . 

roof. The length of minimum path from x to x + e , where e =
 n 
i =1 e i is n − 1 , if we assume 2 n -neighbourhood. A series of the

wo-dimensional refinement operations using a sequence of the

eighbourhoods { N 

2 
i i +1 

} n −1 
i =1 

decides a 2 n -connected path from the

oint x to the point x + e . �

orollary 3. In Z 

n , from 

 = 

{ 

x , x + 

k ∑ 

i =1 

e i , k ≥ 2 

} 

, (43) 

he k-refined set is yielded as 

 = 

{ 

x , x + 

k ∑ 

i =1 

e i , 

} ⋃ 

( 

k ⋃ 

j=2 

{ 

x + 

j ∑ 

i =1 

e i 

} ) 

, (44) 

sing the sequebignce of neighbourhoods { N 

1 
α α+1 

} n −1 
α=1 

. 

xample 1. In Z 

4 for 

 = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

⎛ 

⎜ ⎝ 

a 
b 
c 
d 

⎞ 

⎟ ⎠ 

, 

⎛ 

⎜ ⎝ 

a + 1 

b + 1 

c + 1 

d + 1 

⎞ 

⎟ ⎠ 

⎫ ⎪ ⎬ 

⎪ ⎭ 

, (45) 

sing N 

2 
12 , N 

2 
23 and N 

2 
34 , a 3-refined set 

 = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

⎛ 

⎜ ⎝ 

a 
b 
c 
d 

⎞ 

⎟ ⎠ 

, 

⎛ 

⎜ ⎝ 

a + 1 

b 
c 
d 

⎞ 

⎟ ⎠ 

, 

⎛ 

⎜ ⎝ 

a + 1 

b + 1 

c 
d 

⎞ 

⎟ ⎠ 

, 

⎛ 

⎜ ⎝ 

a + 1 

b + 1 

c + 1 

d 

⎞ 

⎟ ⎠ 

, 

⎛ 

⎜ ⎝ 

a + 1 

b + 1 

c + 1 

d + 1 

⎞ 

⎟ ⎠ 

⎫ ⎪ ⎬ 

⎪ ⎭ 

(46) 

s generated. 

Next, we define the perfectness of objects in the k -sub-grid. 

efinition 24. If the refinement of F k in the k -sub-grid is perfect

bject, we call F is the k -perfect. For the perfectness of the F k after

efinement, 

The definition of the perfectness implies that the relation k ≥ 3

s required. 

We call the point sets 

 − = (∂ −F 
⋃ 

∂ + F ) \ (∂ −F 
⋂ 

∂ + F ) , (47)

 + = (∂ + F 
⋃ 

∂ −F ) \ (∂ + F 
⋂ 

∂ −F ) (48)

he singular points, which disturb the connectivity along the

oundary curves. The refined internal and external boundaries 

 −F = ∂ −F ∪ C −, ∂ + F = ∂ + F ∪ C + (49) 

revent the continuity. The relations in (49) are expressed as 

 −F = ∂ −F 
⋃ 

∂ + F , ∂ + F = ∂ + F 
⋃ 

∂ −F . (50) 

Fig. 4 illustrates the refinement operation for boundary detec-

ion. Refinement operations at the corners preserve the continuity

f the internal and external boundary. 

∂ ±F is numerically computed by ∂ ±F = { ∂ ±(H \ F ) } \ ∂ ±F for

 large hypercube H , which encloses F with the condition
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(a)

(b)

Fig. 4. Refinement operation and boundary detection. (a) Union of the internal and 

external boundaries. (b) Refinement operations at the corners preserve the continu- 

ity of the internal and external boundaries. 
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•

min x ∈ (H \ F ) , y ∈ F | x − y | ≥ 3 on the isothetic lines z = a + t e i for

a ∈ Z 

n . 

Definition 25. The digital set gradient on the boundary is 

∂F = 

( ⋃ 

x ∈ ∂ + F 
V ( x ) 

) ⋂ 

( ⋃ 

x ∈ ∂ −F 

V ( x ) 

) 

. (51)

∂F is the boundary of the embedding F of the object F , that

is, ∂F = ∂F . Then, ∂F is an isothetic Nef-polytope [11] whose ver-

tices and faces lie on the dual grid D 

n . Therefore, we have the next

lemma. 

Lemma 5. ∂F is a union of (n − 1) simplices [16] in the dual grid. 

Proof. All vertices of ∂F lie on the dual grid D 

n . Furthermore,

the collection of vertices of the boundary of each voxel is (n − 1) -

simplex on D 

n . �

Let [ ∂F ] = [ ∂F] be the closure of ∂F = ∂F . [ ∂F ] = [ ∂F] satisfy

the next lemma. 

Lemma 6. The closure of [ ∂F ] = [ ∂F] is an n-complex in the dual

grid. 

Proof. All vertices of the closure of [ ∂F ] lie on the dual grid D 

n .

Since the collection of vertices of each voxel is a simplex in D 

n ,

[ ∂F ] = [ ∂F] is a connected union of digital n -simplices defined in

D 

n . �

For the thickness of [ ∂F ] = [ ∂F] , we have the next theorem. 

Theorem 9. The thickness of the complement of [ ∂F ] = [ ∂F] is at

least two voxels. 

Proof. On any isothetic digital line L (k, z ) = λe k + z for z ∈ Z 

n par-

allel to the vector e k , the linear object F (k, z ) = F 
⋂ 

L (k, z ) is a

thick one-dimensional object. The thickness of the complement of

the embedding F(k, z ) is at least two voxels. �
 •
Theorem 9 implies the following statement on the embedding

f digital objects in a digital space into Euclidean space. 

heorem 10. An isothetic Nef-polytope F and its complement are

erfect voxel objects. 

. Distance transform, skeleton set and thinning 

For integer d , the distance set F ( d ) of F ∈ Z 

n is defined as fol-

owing. 

efinition 26. 

 (d) = 

{{ x | min x ∈ F , y ∈ F | x − y | ∞ 

= d} , d > 0 , 

{ x | min y ∈ F , x ∈ F | x − y | ∞ 

= d} , d < 0 . 
(52)

The negative value of the distance in Eq. (52) expresses

he distance between an object, which is a connected compo-

ent, and a point which are not connected to the object. Since

efinitions 21 and 26 imply the relations F (1) = ∂ −F and F (−1) =
 + F . the recursive forms 

 (d + 1) = F (d) \ (F (d) � N 

n ) , F (0) := F , d ≥ 0 , (53)

 (d − 1) = (F (d) � N 

n ) \ F (d) , F (0) := F , d ≤ 0 . (54)

ompute the distance set F ( d ) of F ∈ Z 

n . The following algorithm

chieves the distance transform for d > 0. 

For the positive label d , labelling d to each point in F ( d ), the

istance map D F ( x ), D F ( x ) | x ∈ F (d) = d of F is constructed. d max is de-

ected, when algorithm 1 halts. 

Algorithm 1: Distance transform for d > 0. 

Data : F 

Result : { F (d) } d max 

d=1 

d := 0 , F (0) := F ; 

while F (d + 1)  = ∅ do 

F (d + 1) = F (d) \ (F (d) � N 

n ) ; 

d := d + 1 ; 

The distance map D F ( x ) derives the distance-based skeleton set

s 

 F = 

d max ⋃ 

d=1 

{ x | d = max 
y ∈ N n ( x ) 

D F ( y ) } , (55)

hat is, the distance-based skeleton set is the collection of the lo-

al maximal points of the distance map. Since perfectness is not

uaranteed for points in S F , application of dilation to S F derives a

onnected set 

 F = S F � N 

n = S F 
⋃ 

S F (−1) . (56)

e call T F the trunk of F . For the trunk we have the following. 

heorem 11. The trunk T F of F ∈ Z 

n is a thin object. 

roof. On the intersections of S F and a pair of adjacent parallel

ines l 0 = t e k + αe l and l + = t e k (α + 1) e l for t ∈ Z , where k  = l ,

or a pair of successive integers α and α + 1 , three local configu-

ations 

• ◦
• ◦, 

◦ ◦ • ◦
◦ • ◦ ◦, 

• ◦ ◦
◦ • ◦, 

xit, where the points with labels • and ◦ belong to S F and its

ompliment. 

One dimensional dilation along lines l ◦ and l + derives the local

onfigurations 

• •
• •, 

◦ • • •
• • • ∗, 

• • • ∗
◦ • • •, 
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(a)

(b)

(c)

Fig. 5. Skelton set and the r -trunk on a point set. From top to down, (a) a point 

set, (b) the skeleton set of (a) and (c) r -trunk of the set (a). The refinement yields 

points with the mark × . The points • without connecting bars are points which 

are not included to the original point set. 
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d  
here ∗ is • or ◦ depending on local structures of S F . These con-

guration imply that S F � N 

1 
k 

is locally thin. Since S F � N 

1 
k 

is lo-

ally an concatenations of these configurations in the direction of

 e i } i  = k , S F � N 

1 
k 

is thin for k = 1 , 2 , · · · , n . Therefore, 

 F � N 

n = 

n ⋃ 

k =1 

S F � N 

1 
k (57)

s thin. �

The refinement operation to trunk T F of F yields a thick object. 

efinition 27. The r -trunk of a perfect digital object F is 

T F = S F � N 

n 
⋂ 

F . (58) 

The r -trunk which expresses the skeletal object of a point set

n Z 

n possess the next theorem. 

heorem 12. The r-trunk of a perfect digital object F is perfect. 

Fig. 5 (a)–(c) show a point set, its skeletal set and the r -trunk

xtracted from the point set (a). The refinement yields points with

he mark × . The points • without connecting bars are points

hich are not included to the original point set. 

Eqs. (53) and (54) imply the following theorem. 
heorem 13. Decomposition of objects and neighbourhood derives

he relations 

F k (l) α(l) (d + 1) 

= 

n −l ⋃ 

k (l+1)=1 

⋃ 

α(l+1) ∈N (k (l+1)) 

 k (l+1) α(l+1) (d) \ (F k (l+1) α(l+1) (d) � N 

n −l 
k (1) k (2) ···k (l+1) 

) 
)
, (59) 

F k ( l ) α( l ) ( d − 1 ) 

= 

n −l ∪ 

k ( l+1 ) =1 
∪ 

α( l+1 ) ∈ N ( k ( l+1 ) ) ((
F k ( l+1 ) α( l+1 ) ( d ) � N 

n −l 
k ( 1 ) k ( 2 ) ···k ( l+1 ) 

)
\ F k ( l+1 ) α( l+1 ) ( d ) 

)
, 

(60)

or computation of the distance sets and truck objects. 

Using decomposition of the Minkowski subtraction, the hit-or-

iss transform is decomposed. 

orollary 4. With the condition G ∩ H = ∅ , which implies G kα ∩
 kα = ∅ , the hit-or-miss transform is expressed as 

(F � G ) 
⋂ 

( F � H ) 

= ( 
n ⋃ 

k =1 

⋃ 

α∈N (k ) 

F kα � G kα) 
⋂ 

( 
n ⋃ 

l=1 

⋃ 

β∈N (k ) 

F kβ � G kβ ) 

= 

n ⋃ 

k =1 

⋃ 

α∈N (k ) 

[(F kα � G kα) 
⋂ 

( F kα � H kα)] . (61) 

This expression implies that operations for the hit-or-miss

ransform to the point set F and its compliment F are decomposed

nto those in the lower-dimensional spaces. 

The iteration form 

 

(i +1) = F (i ) \ [(F (i ) 
� G ) 

⋂ 

( F (i ) � H )] , (62)

here F (0) := F , for i ≥ 0, achieves thinning of point set F by se-

ecting an appropriate series of pairs G and H . This expression of

hinning and Corollary 4 for the hit-or-miss transform derive mul-

islice and multidirectional decomposition of thinning. 

heorem 14. The operation of Eq. (62) for thinning is decomposed as

 

(i +1) = 

n ⋃ 

k =1 

⋃ 

α∈N (k ) 

{ F (i ) 
kα

\ [(F (i ) 
kα

� G kα) 
⋂ 

( F (i ) 
kα

� H kα)] } . (63)

Theorem 14 leads to the conclusion that thinning is achieved

lice by slice in each direction by selecting pairs of elements for

he hit-or-miss transform. 

. Conclusions 

We showed an explicit decomposition geometry of the neigh-

ourhood in higher-dimensional digital space. This decomposi-

ion property clarifies that morphological operations in an n -

imensional digital space can be computed as the union of lower-

imensional morphological operations on isothetic digital sub-

paces intersecting with the digital objects. Decomposition procr-

ures of motphological operations provide us to construct new op-

rations by the combination of the well-established operations in

ow-dimensional spaces. 

Construction properties of the neighbourhood allow us to es-

imate the upper bound of operation times from the combination

f operations in lower-dimensional spaces. Let T k be the computa-

ional time of an operation in k dimensional space for k ≤ n . The

ecomposition of operations to the lower-dimensional ones implies



328 A. Imiya / Pattern Recognition Letters 135 (2020) 321–328 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the relation T n ≤ s k × n C k × T k where s k and n C k are the maximum

number of the (n − k ) -dimensional slices and the number of de-

compositions of object for operations to lower-dimensional spaces.

If k = n, then s k = 1 and n C k . 

In a perfect voxel object, any voxels are contained as connected

components, since any perfect voxel objects are Euclidean embed-

ding of thick objects in Z 

n . The well-composdness [17–19] preserve

connectives of Euclidian embedding of thin digital objects. A refor-

mulation of well-composedness from the view point of thickness

and thinness of voxel objects using resampling in k -subgrid is a

future work. 
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