Numerical resolution of Monge-Ampère equations arising in optics

Boris Thibert

Joint works with Quentin Mérigot and Jocelyn Meyron

Digital Geometry and Discrete Variational Calculus Luminy (CIRM) - April 1 2021

1 - 1

Numerical resolution of Monge-Ampère equations arising in optics

Boris Thibert

Joint works with Quentin Mérigot and Jocelyn Meyron

- 2

Digital Geometry and Discrete Variational Calculus Luminy (CIRM) - April 1 2021

Numerical resolution of Monge-Ampère equations arising in optics

Boris Thibert

il fool's joke! Joint works with Quentin Mérigot and Jocelyn Meyron

Digital Geometry and Discrete Variational Calculus Luminy (CIRM) - April 1 2021

Nonimaging optics: motivations

Goal: design components that transfer a prescribed light source to a prescribed target illumination

Nonimaging optics: motivations

Goal: design components that transfer a prescribed light source to a prescribed target illumination

Motivations / applications

Car beam design

2

- Public lighting: stadium, streets,...
- Reduction of light pollution

Imaging optics: mirror case

We are given a one-to-one map $f: X \to Y$.

Imaging optics: mirror case

We are given a one-to-one map $f: X \to Y$.

Goal: Find a surface S such that the reflection of X onto Y preserves f.

Non-imaging optics: mirror case

Input: Light source with intensity μ

Target illumination with intensity ν

No one-to-one map given

 ${\cal V}$

Non-imaging optics: mirror case

Input: Light source with intensity μ No one-to-one map givenTarget illumination with intensity ν

Goal: Find a surface S such that reflects μ to the ν by Snell's law

5 - 3

5 - 4

Outline

- ► Case 1: mirror for point light source
- Case 2: mirror for collimated light source
- Optimal transport
- Semi-discrete optimal transport
- Damped Newton algorithm
- Non-imaging optics: Far-Field target
- Non-imaging optics: Near-Field target

Punctual light at origin o, μ measure on \mathbb{S}_o^2 Prescribed far-field: ν on \mathbb{S}_∞^2

Punctual light at origin o, μ measure on \mathbb{S}_o^2 Prescribed far-field: ν on \mathbb{S}_∞^2

Goal: Find a surface R which sends (\mathbb{S}_o^2, μ) to (\mathbb{S}_∞, ν) under reflection by Snell's law.

Punctual light at origin o, μ measure on \mathbb{S}_o^2 Prescribed far-field: ν on \mathbb{S}_∞^2

Goal: Find a surface R which sends (\mathbb{S}_o^2, μ) to (\mathbb{S}_∞, ν) under reflection by Snell's law.

▶ R is parameterized by $x \in \mathbb{S}_0^2 \mapsto x \mathbf{u}(x)$ where $\mathbf{u} : \mathbb{S}_0^2 \to \mathbb{R}^+$ radial distance

Punctual light at origin o, μ measure on \mathbb{S}_o^2 Prescribed far-field: ν on \mathbb{S}_∞^2

Goal: Find a surface R which sends (\mathbb{S}_o^2, μ) to (\mathbb{S}_∞, ν) under reflection by Snell's law.

▶ R is parameterized by $x \in \mathbb{S}_0^2 \mapsto x \mathbf{u}(x)$ where $\mathbf{u} : \mathbb{S}_0^2 \to \mathbb{R}^+$ radial distance

Snell's law
$$T_{\mathbf{u}}: x \in \mathbb{S}_0^2 \mapsto y = x - 2\langle x | n_{\mathbf{u}} \rangle n_{\mathbf{u}}$$

Punctual light at origin o, μ measure on \mathbb{S}_o^2 Prescribed far-field: ν on \mathbb{S}_∞^2

Goal: Find a surface R which sends (\mathbb{S}_o^2, μ) to (\mathbb{S}_∞, ν) under reflection by Snell's law.

- ▶ R is parameterized by $x \in \mathbb{S}_0^2 \mapsto x \mathbf{u}(x)$ where $\mathbf{u} : \mathbb{S}_0^2 \to \mathbb{R}^+$ radial distance
 - Snell's law $T_{\mathbf{u}}: x \in \mathbb{S}_0^2 \mapsto y = x 2\langle x | n_{\mathbf{u}} \rangle n_{\mathbf{u}}$

Brenier formulation $T_{\sharp}\mu = \nu$

Punctual light at origin o, μ measure on \mathbb{S}_o^2 Prescribed far-field: ν on \mathbb{S}_∞^2

Goal: Find a surface R which sends (\mathbb{S}_o^2, μ) to (\mathbb{S}_∞, ν) under reflection by Snell's law.

▶ R is parameterized by $x \in \mathbb{S}_0^2 \mapsto x \mathbf{u}(x)$ where $\mathbf{u} : \mathbb{S}_0^2 \to \mathbb{R}^+$ radial distance

Snell's law
$$T_{\mathbf{u}}: x \in \mathbb{S}_0^2 \mapsto y = x - 2 \langle x | n_{\mathbf{u}} \rangle n_{\mathbf{u}}$$

Brenier formulation $T_{\sharp}\mu = \nu$ i.e. for every borelian B $\mu(T^{-1}(B)) = \nu(B)$

7 - 6

Punctual light at origin o, μ measure on \mathbb{S}_o^2 Prescribed far-field: ν on \mathbb{S}_∞^2

Goal: Find a surface R which sends (\mathbb{S}_o^2, μ) to (\mathbb{S}_∞, ν) under reflection by Snell's law.

▶ R is parameterized by $x \in \mathbb{S}_0^2 \mapsto x \mathbf{u}(x)$ where $\mathbf{u} : \mathbb{S}_0^2 \to \mathbb{R}^+$ radial distance

Snell's law $T_{\mathbf{u}}: x \in \mathbb{S}_0^2 \mapsto y = x - 2\langle x | n_{\mathbf{u}} \rangle n_{\mathbf{u}}$

Change of variable If $\mu(x) = f(x)dx$ and $\nu(y) = g(y)dy$ $g(T(x)) \det(DT(x)) = f(x)$

Brenier formulation $T_{\sharp}\mu = \nu$ i.e. for every borelian B $\mu(T^{-1}(B)) = \nu(B)$

7 - 7

 $T_{\mathbf{u}}: x \in \mathbb{S}_0^2 \mapsto y = x - 2\langle x | n_{\mathbf{u}} \rangle n_{\mathbf{u}}$

Monge-Ampère equation Find $\mathbf{u}: \mathbb{S}_0^2 \to \mathbb{R}^+$ s.t.

$$g(T_{\mathbf{u}}(x)) \det(DT_{\mathbf{u}}(x)) = f(x)$$

$$T_{\mathbf{u}}(x) = x - \langle x | n_{\mathbf{u}}(x) \rangle n_{\mathbf{u}}(x)$$

$$n_{\mathbf{u}}(x) = \frac{\nabla \mathbf{u}(x) - \mathbf{u}(x)x}{\sqrt{\|\nabla \mathbf{u}(x)\|^2 + \mathbf{u}(x)^2}},$$

7 _ 8 with boundary and other conditions

Punctual light at origin o, μ measure on \mathbb{S}_o^2 Prescribed far-field: ν on \mathbb{S}_∞^2

Goal: Find a surface R which sends (\mathbb{S}_o^2, μ) to (\mathbb{S}_∞, ν) under reflection by Snell's law.

▶ R is parameterized by $x \in \mathbb{S}_0^2 \mapsto x \mathbf{u}(x)$ where $\mathbf{u} : \mathbb{S}_0^2 \to \mathbb{R}^+$ radial distance

Snell's law
$$T_{\mathbf{u}}: x \in \mathbb{S}_0^2 \mapsto y = x - 2 \langle x | n_{\mathbf{u}} \rangle n_{\mathbf{u}}$$

Monge-Ampère equation Find $\mathbf{u}: \mathbb{S}_0^2 \to \mathbb{R}^+$ s.t.

$$\begin{split} g(T_{\mathbf{u}}(x)) \det(DT_{\mathbf{u}}(x)) &= f(x) \\ T_{\mathbf{u}}(x) &= x - \langle x | n_{\mathbf{u}}(x) \rangle n_{\mathbf{u}}(x) \\ n_{\mathbf{u}}(x) &= \frac{\nabla \mathbf{u}(x) - \mathbf{u}(x)x}{\sqrt{\|\nabla \mathbf{u}(x)\|^2 + \mathbf{u}(x)^2}} \end{split},$$

7 - 9 with boundary and other conditions

- Existence of weak solutions Caffarelli & Oliker 94
- Existence of solutions, regularity

Wang 96, Guan & Wang 98, Caffarelli Gutierrez & Huang '08

Punctual light at origin o, μ measure on \mathbb{S}_o^2

Punctual light at origin o, μ measure on \mathbb{S}_o^2

Prescribed far-field:
$$\nu = \nu_1 \delta_{y_1}$$
 on \mathbb{S}^2_{∞}

Punctual light at origin o, μ measure on \mathbb{S}_o^2 Prescribed far-field: $\nu = \nu_1 \delta_{y_1}$ on \mathbb{S}_∞^2 **R** : paraboloid of direction y_1 and focal O

8 - 3

Punctual light at origin o, μ measure on \mathbb{S}_o^2

Prescribed far-field: $\nu = \sum_i \nu_i \delta_{y_i}$ on \mathcal{S}^2_{∞}

Punctual light at origin o, μ measure on \mathbb{S}_o^2 Prescribed far-field: $\nu = \sum_i \nu_i \delta_{y_i}$ on \mathcal{S}_∞^2

 $P_i(\kappa_i) =$ solid paraboloid of revolution with focal o, direction y_i and focal distance κ_i

 $R(\vec{\kappa}) = \partial \left(\bigcap_{i=1}^{N} P_i(\kappa_i) \right)$

Decomposition of \mathbb{S}_o^2 : $V_i(\vec{\kappa}) = \pi_{\mathcal{S}_o^2}(R(\vec{\kappa}) \cap \partial P_i(\kappa_i))$ = directions that are reflected towards y_i .

Decomposition of \mathbb{S}_o^2 : $V_i(\vec{\kappa}) = \pi_{\mathcal{S}_o^2}(R(\vec{\kappa}) \cap \partial P_i(\kappa_i))$ = directions that are reflected towards y_i .

Problem (FF): Find $\kappa_1, \ldots, \kappa_N$ such that for every *i*, $\mu(V_i(\vec{\kappa})) = \nu_i$.

amount of light reflected in direction y_i .

Lemma: With
$$c(x, y) = -\log(1 - \langle x | y \rangle)$$
, and $\psi_i := \log(\kappa_i)$,
 $V_i(\vec{\kappa}) = \{x \in \mathbb{S}_0^2, \ c(x, y_i) + \psi_i \le c(x, y_j) + \psi_j \quad \forall j\}.$

Caffarelli-Oliker '94

Lemma: With
$$c(x, y) = -\log(1 - \langle x | y \rangle)$$
, and $\psi_i := \log(\kappa_i)$,
 $V_i(\vec{\kappa}) = \{x \in \mathbb{S}_0^2, \ c(x, y_i) + \psi_i \le c(x, y_j) + \psi_j \quad \forall j\}.$

Caffarelli-Oliker '94

Proof: $\partial P_i(\kappa_i)$ is parameterized in radial coordinates by $\rho_i : x \in \mathbb{S}_o^2 \mapsto \frac{\kappa_i}{1 - \langle x | y_i \rangle}$

Lemma: With
$$c(x, y) = -\log(1 - \langle x | y \rangle)$$
, and $\psi_i := \log(\kappa_i)$,
 $V_i(\vec{\kappa}) = \{x \in \mathbb{S}_0^2, \ c(x, y_i) + \psi_i \le c(x, y_j) + \psi_j \quad \forall j\}.$

Caffarelli-Oliker '94

Proof: $\partial P_i(\kappa_i)$ is parameterized in radial coordinates by $\rho_i : x \in \mathbb{S}_o^2 \mapsto \frac{\kappa_i}{1 - \langle x | y_i \rangle}$

$$x \in \mathcal{V}_i(\vec{\kappa}) \iff \frac{\kappa_i}{1 - \langle x | y_i \rangle} \le \frac{\kappa_j}{1 - \langle x | y_j \rangle}$$

Lemma: With
$$c(x, y) = -\log(1 - \langle x | y \rangle)$$
, and $\psi_i := \log(\kappa_i)$,
 $V_i(\vec{\kappa}) = \{x \in \mathbb{S}_0^2, \ c(x, y_i) + \psi_i \le c(x, y_j) + \psi_j \quad \forall j\}.$

Caffarelli-Oliker '94

Proof: $\partial P_i(\kappa_i)$ is parameterized in radial coordinates by $\rho_i : x \in \mathbb{S}_o^2 \mapsto \frac{\kappa_i}{1 - \langle x | y_i \rangle}$ $x \in V_i(\vec{\kappa}) \iff \frac{\kappa_i}{1 - \langle x | y_i \rangle} \leq \frac{\kappa_j}{1 - \langle x | y_j \rangle}$ $\Leftrightarrow \log(\kappa_i) - \log(1 - \langle x | y_i \rangle) \leq \cdots$

9 - 4

Lemma: With
$$c(x, y) = -\log(1 - \langle x | y \rangle)$$
, and $\psi_i := \log(\kappa_i)$,
 $V_i(\vec{\kappa}) = \{x \in \mathbb{S}_0^2, \ c(x, y_i) + \psi_i \le c(x, y_j) + \psi_j \quad \forall j\}.$

Caffarelli-Oliker '94

Proof: $\partial P_i(\kappa_i)$ is parameterized in radial coordinates by $\rho_i : x \in \mathbb{S}_o^2 \mapsto \frac{\kappa_i}{1 - \langle x | y_i \rangle}$ $x \in V_i(\vec{\kappa}) \iff \frac{\kappa_i}{1 - \langle x | y_i \rangle} \leq \frac{\kappa_j}{1 - \langle x | y_j \rangle}$ $\Leftrightarrow \log(\kappa_i) - \log(1 - \langle x | y_i \rangle) \leq \cdots$ $\iff \psi_i + c(x, y_i) \leq \psi_i + c(x, y_i)$
Mirror / Point light source: Optimal Transport

Lemma: With
$$c(x, y) = -\log(1 - \langle x | y \rangle)$$
, and $\psi_i := \log(\kappa_i)$,
 $V_i(\vec{\kappa}) = \{x \in \mathbb{S}_0^2, \ c(x, y_i) + \psi_i \le c(x, y_j) + \psi_j \quad \forall j\}.$

Caffarelli-Oliker '94

 \rightsquigarrow An optimal transport problem on \mathbb{S}^2

Wang '04

Problem (FF): Find $\kappa_1, \ldots, \kappa_N$ such that for every *i*, $\mu(V_i(\vec{\kappa})) = \nu_i$.

Outline

- ► Case 1: mirror for point light source
- Case 2: mirror for collimated light source
- Optimal transport
- Semi-discrete optimal transport
- Damped Newton algorithm
- Non-imaging optics: Far-Field target
- Non-imaging optics: Near-Field target

Collimated source

Brenier formulation $(F \circ \nabla \mathbf{u})_{\sharp} \mu = \nu$

 $\Leftrightarrow \forall A \ \mu((F \circ \nabla \mathbf{u})^{-1}(A)) = \nu(A)$

Brenier formulation $(F \circ \nabla \mathbf{u})_{\sharp} \mu = \nu$ $\Leftrightarrow \forall A \ \mu((F \circ \nabla \mathbf{u})^{-1}(A)) = \nu(A)$ $\Leftrightarrow \forall B \ \mu((\nabla \mathbf{u})^{-1}(B)) = \tilde{\nu}(B) \text{ with } B = F^{-1}(A) \subset \mathbb{R}^2$

 $\begin{array}{l} \textbf{Brenier formulation} \quad (F \circ \nabla \textbf{u})_{\sharp} \mu = \nu \\ \Leftrightarrow \forall A \ \mu((F \circ \nabla \textbf{u})^{-1}(A)) = \nu(A) \\ \Leftrightarrow \forall B \ \mu((\nabla \textbf{u})^{-1}(B)) = \tilde{\nu}(B) \quad \text{with } B = F^{-1}(A) \subset \mathbb{R}^2 \\ \Leftrightarrow \det(\nabla^2 \textbf{u}(x))g(\nabla \textbf{u}(x)) = f(x) \text{ if } \mu(x) = f(x)dx \text{ and } \tilde{\nu}(x) = g(x)dx \\ 11 - 5 \end{array}$

Monge-Ampère equation in \mathbb{R}^2

Find $\mathbf{u}: \Omega \to \mathbb{R}^2$ such that $\det(\nabla^2 \mathbf{u}(x))g(\nabla \mathbf{u}(x)) = f(x)$

with boundary conditions

Collimated light μ measure on $\Omega \subset \mathbb{R}^2 \times \{0\}$ Prescribed far-field: $\nu = \sum_i \nu_i \delta_{y_i}$ on \mathbb{S}^2

Collimated light μ measure on $\Omega \subset \mathbb{R}^2 \times \{0\}$ Prescribed far-field: $\nu = \sum_i \nu_i \delta_{y_i}$ on \mathbb{S}^2

Collimated light μ measure on $\Omega \subset \mathbb{R}^2 \times \{0\}$ Prescribed far-field: $\nu = \sum_i \nu_i \delta_{y_i}$ on \mathbb{S}^2

Collimated light μ measure on $\Omega \subset \mathbb{R}^2 \times \{0\}$ Prescribed far-field: $\nu = \sum_i \nu_i \delta_{y_i}$ on \mathbb{S}^2

Mirror / Collimated source: Optimal Transport

Mirror / Collimated source: Optimal Transport

 \rightsquigarrow Optimal transport problem in \mathbb{R}^2

Problem (FF): Find ψ_1, \ldots, ψ_N such that for every i, $\mu(V_i(\vec{\psi})) = \nu_i$.

Outline

- ► Case 1: mirror for point light source
- Case 2: mirror for collimated light source
- Optimal transport
- Semi-discrete optimal transport
- Damped Newton algorithm
- Non-imaging optics: Far-Field target
- Non-imaging optics: Near-Field target

Monge problem (1781)

How to optimally move sand ?

Monge problem (1781)

How to optimally move sand ?

Let $c: X \times Y \to \mathbb{R}$ be a cost function

e.g. $c(x, y) = ||x - y||^2$

Let $c: X \times Y \to \mathbb{R}$ be a cost function

e.g. $c(x, y) = ||x - y||^2$

Monge problem. Find a map $T: X \to Y$ such that

► T preserves the mass, i.e. $\nu(A) = \mu(T^{-1}(A))$

► T minimizes the total cost

 $\min \int_X c(x, T(x)) d\mu(x)$

The minimizer does not always exist; Constraint not linear 15 - 3

Let $c: X \times Y \to \mathbb{R}$ be a cost function

e.g. $c(x, y) = ||x - y||^2$

Kantorovitch relaxation – 1940's

Minimise $\int c(x,y)d\pi(x,y)$

where π is a transport plan, i.e

 π is a probability measure on $X\times Y$

$$\pi(A\times Y)=\mu(A)$$
$$\pi(X\times B)=\nu(B)$$
15 - 4

Numerical optimal transport

Discrete source and target

linear programming

Bertsekas' auction algorithm

Sinkhorn/IPFP

Numerical optimal transport

Discrete source and target

linear programming

Bertsekas' auction algorithm

Sinkhorn/IPFP

Source and target with density (PDE):

Benamou-Brenier formulation

Stencil methods for Monge Ampère equations

Numerical optimal transport

Discrete source and target

linear programming

Bertsekas' auction algorithm

Sinkhorn/IPFP

Source and target with density (PDE):

Benamou-Brenier formulation

Stencil methods for Monge Ampère equations

Source with density, discrete target:

Coordinate-wise increment

Oliker-Prussner '89 Caffarelli-Kochengin-Oliker '97 Kitagawa '12

Newton and quasi-Newton methods Aurenhammer, Hoffmann, Aronov '98 Mérigot '11, Levy'15, Kitagawa-Mérigot-T.'17, etc.

Outline

- ► Case 1: mirror for point light source
- Case 2: mirror for collimated source light
- Optimal transport
- Semi-discrete optimal transport
- Damped Newton algorithm
- Non-imaging optics: Far-Field target
- Non-imaging optics: Near-Field target

 $\mu(x) = \rho(x) dx \text{ probability measure on } X$ $\nu = \sum_{i} \nu_i \delta_{y_i} \text{ prob. measure on finite } Y = \{y_1, \cdots, y_N\}$ $c: X \times Y \to \mathbb{R} \text{ cost function}$

 $\mu(x) = \rho(x) dx \text{ probability measure on } X$ $\nu = \sum_{i} \nu_i \delta_{y_i} \text{ prob. measure on finite } Y = \{y_1, \cdots, y_N\}$ $c: X \times Y \to \mathbb{R} \text{ cost function}$

Transport map: $T: X \to Y$ s.t. $\forall i, \ \mu(T^{-1}(\{y_i\})) = \nu_i \ (i.e. \ T_{\#}\mu = \nu)$

 $\mu(x) = \rho(x) dx \text{ probability measure on } X$ $\nu = \sum_{i} \nu_i \delta_{y_i} \text{ prob. measure on finite } Y = \{y_1, \cdots, y_N\}$ $c: X \times Y \to \mathbb{R} \text{ cost function}$

Transport map: $T: X \to Y$ s.t. $\forall i, \ \mu(T^{-1}(\{y_i\})) = \nu_i \ (i.e. \ T_{\#}\mu = \nu)$

Monge problem: Find a transport map $T: X \to Y$ that minimizes $\int_X c(x, T(x)) d\mu(x)$

- $\rho: X \rightarrow \mathbb{R}$ density of population
- Y = location of bakeries
- $c(\boldsymbol{x}, \boldsymbol{y_i}) := \|\boldsymbol{x} \boldsymbol{y_i}\|^2$

- $\rho: X \to \mathbb{R}$ density of population
- Y = location of bakeries
- $c(\boldsymbol{x}, \boldsymbol{y_i}) := \|\boldsymbol{x} \boldsymbol{y_i}\|^2$

If the price of bread is uniform, people go the closest bakery:

$$Vor(y_i) = \{ x \in X; \forall j, \ c(x, y_i) \le c(x, y_j) \}$$

- $\rho: X \rightarrow \mathbb{R}$ density of population
- Y = location of bakeries
- $c(\boldsymbol{x}, \boldsymbol{y_i}) := \|\boldsymbol{x} \boldsymbol{y_i}\|^2$

If prices are given by ψ_1, \cdots, ψ_N , people make a compromise:

$\operatorname{Lag}_{i}(\psi) = \{ x \in X; \forall j, \ c(x, y_{i}) + \psi_{i} \leq c(x, y_{j}) + \psi_{j} \}$

- $ho: X
 ightarrow \mathbb{R}$ density of population
- Y = location of bakeries
- $c(\boldsymbol{x}, \boldsymbol{y_i}) := \|\boldsymbol{x} \boldsymbol{y_i}\|^2$

If prices are given by ψ_1, \cdots, ψ_N , people make a compromise:

$$\operatorname{Lag}_{i}(\psi) = \{ x \in X; \forall j, \ c(x, y_{i}) + \psi_{i} \leq c(x, y_{j}) + \psi_{j} \}$$

Lemma: The map $T_{\psi}: X \to Y$ is an **optimal transport map** between ρ and ν_{ψ} where $\nu_{\psi,i} = \rho(\operatorname{Lag}_i(\psi))$ is the measure of $\operatorname{Lag}_i(\psi)$

- $ho: X
 ightarrow \mathbb{R}$ density of population
- Y = location of bakeries
- $c(\boldsymbol{x}, \boldsymbol{y_i}) := \|\boldsymbol{x} \boldsymbol{y_i}\|^2$

If prices are given by ψ_1, \cdots, ψ_N , people make a compromise:

 $\operatorname{Lag}_{i}(\psi) = \{ x \in X; \forall j, \ c(x, y_{i}) + \psi_{i} \leq c(x, y_{j}) + \psi_{j} \}$

Lemma: The map $T_{\psi}: X \to Y$ is an **optimal transport map** between ρ and ν_{ψ} where $\nu_{\psi,i} = \rho(\operatorname{Lag}_i(\psi))$ is the measure of $\operatorname{Lag}_i(\psi)$

For other costs c, **(Twist)**: $\forall x$, the map $y \mapsto \nabla_x c(x, y)$ is injective

- $ho: X
 ightarrow \mathbb{R}$ density of population
- Y = location of bakeries
- $c(\boldsymbol{x}, \boldsymbol{y_i}) := \|\boldsymbol{x} \boldsymbol{y_i}\|^2$

If prices are given by ψ_1, \cdots, ψ_N , people make a compromise:

 $\operatorname{Lag}_{i}(\psi) = \{ x \in X; \forall j, \ c(x, y_{i}) + \psi_{i} \leq c(x, y_{j}) + \psi_{j} \}$

Lemma: The map $T_{\psi}: X \to Y$ is an **optimal transport map** between ρ and ν_{ψ} where $\nu_{\psi,i} = \rho(\operatorname{Lag}_i(\psi))$ is the measure of $\operatorname{Lag}_i(\psi)$

For other costs c, **(Twist)**: $\forall x$, the map $y \mapsto \nabla_x c(x, y)$ is injective

Solving OT between ρ and $\nu \iff$ Finding ψ s.t. $\rho(\text{Lag}_i(\psi)) = \nu_i \ \forall i$ 19 - 6

Theorem: Finding an **optimal transport** between ρ and $\nu = \sum_i \nu_i \delta_{y_i}$ \iff maximizing the **concave** function $\Phi : \mathbb{R}^N \to \mathbb{R}$ $\Phi(\psi) := \sum_i \int_{\text{Lag}_i(\psi)} [c(x, y_i) + \psi_i] \, d \, \rho(x) - \sum_i \psi_i \nu_i$

Aurenhammer, Hoffman, Aronov '98

Theorem: Finding an **optimal transport** between ρ and $\nu = \sum_i \nu_i \delta_{y_i}$ \iff maximizing the **concave** function $\Phi : \mathbb{R}^N \to \mathbb{R}$ $\Phi(\psi) := \sum_i \int_{\text{Lag}_i(\psi)} [c(x, y_i) + \psi_i] \, d \, \rho(x) - \sum_i \psi_i \nu_i$

Aurenhammer, Hoffman, Aronov '98

Recast of Kantorovich duality.

Theorem: Finding an **optimal transport** between ρ and $\nu = \sum_{i} \nu_i \delta_{y_i}$ \iff maximizing the **concave** function $\Phi : \mathbb{R}^N \to \mathbb{R}$ $\Phi(\psi) := \sum_{i} \int_{\text{Lag}_i(\psi)} [c(x, y_i) + \psi_i] \, d \, \rho(x) - \sum_{i} \psi_i \nu_i$

Aurenhammer, Hoffman, Aronov '98

Recast of Kantorovich duality.

$$\nabla \Phi(\psi) = (\rho(\operatorname{Lag}_{i}(\psi)) - \nu_{i})_{1 \leq i \leq N}.$$
 Hence,

$$\nabla \Phi = 0 \iff \forall i, \ \rho(\operatorname{Lag}_{i}(\psi)) = \nu_{i}.$$
 (discrete Monge-Ampère equation)

Theorem: Finding an **optimal transport** between ρ and $\nu = \sum_i \nu_i \delta_{y_i}$ \iff maximizing the **concave** function $\Phi : \mathbb{R}^N \to \mathbb{R}$ $\Phi(\psi) := \sum_i \int_{\text{Lag}_i(\psi)} [c(x, y_i) + \psi_i] \, d \, \rho(x) - \sum_i \psi_i \nu_i$

Aurenhammer, Hoffman, Aronov '98

Recast of Kantorovich duality.

$$\nabla \Phi(\psi) = (\rho(\operatorname{Lag}_{i}(\psi)) - \nu_{i})_{1 \leq i \leq N}.$$
 Hence,

$$\nabla \Phi = 0 \iff \forall i, \ \rho(\operatorname{Lag}_{i}(\psi)) = \nu_{i}.$$
 (discrete Monge-Ampère equation)

Existing numerical methods: coordinate-wise increment with minimum step, with complexity $O(\frac{N^3}{\varepsilon} \log(N))$, $\varepsilon = \text{precision}$. [Oliker-Prussner '99]
Kantorovitch duality

Theorem: Finding an **optimal transport** between ρ and $\nu = \sum_i \nu_i \delta_{y_i}$ \iff maximizing the **concave** function $\Phi : \mathbb{R}^N \to \mathbb{R}$ $\Phi(\psi) := \sum_i \int_{\text{Lag}_i(\psi)} [c(x, y_i) + \psi_i] \, d \, \rho(x) - \sum_i \psi_i \nu_i$

Aurenhammer, Hoffman, Aronov '98

Recast of Kantorovich duality.

$$\nabla \Phi(\psi) = (\rho(\operatorname{Lag}_{i}(\psi)) - \nu_{i})_{1 \leq i \leq N}.$$
 Hence,

$$\nabla \Phi = 0 \iff \forall i, \ \rho(\operatorname{Lag}_{i}(\psi)) = \nu_{i}.$$
 (discrete Monge-Ampère equation)

- Existing numerical methods: coordinate-wise increment with minimum step, with complexity $O(\frac{N^3}{\varepsilon} \log(N))$, $\varepsilon = \text{precision}$. [Oliker-Prussner '99]
- Quasi Newton methods for $c(x, y) = ||x y||^2$ on $\mathbb{R}^2/\mathbb{R}^3 \mathbb{S}^2$ No analysis [Mérigot. '11] [Lévy '14] [de Goes et al '12] [Machado, Mérigot, Thibert '16]
- Newton method in \mathbb{R}^2 , \mathbb{R}^3 , when μ supported on a triangulation.

Outline

- ► Case 1: mirror for point light source
- Case 2: mirror for collimated source light
- Optimal transport
- Semi-discrete optimal transport
- Damped Newton algorithm
- Non-imaging optics: Far-Field target
- Non-imaging optics: Near-Field target

Equation $\rho(\operatorname{Lag}_i(\psi)) = \nu_i$ for all i

Equation $\rho(\operatorname{Lag}_i(\psi)) = \nu_i$ for all i

We define $G: \mathbb{R}^N \to \mathbb{R}^N$ by $G(\psi) = (\rho(\operatorname{Lag}_i(\psi)))_{1 \le i \le N}$

Equation $G(\psi) = \nu$

X

Remark: G is invariant by addition of a vector $\lambda(1, \dots, 1)$.

Equation $\rho(\operatorname{Lag}_i(\psi)) = \nu_i$ for all i

We define $G: \mathbb{R}^N \to \mathbb{R}^N$ by $G(\psi) = (\rho(\operatorname{Lag}_i(\psi)))_{1 \le i \le N}$

Equation $G(\psi) = \nu$

Remark: G is invariant by addition of a vector $\lambda(1, \dots, 1)$.

Newton algorithm: for solving $G(\psi) = \nu$ Input: $\psi^0 \in \mathbb{R}^N$ s.t. $\varepsilon := \frac{1}{2} \min_i \min(G(\psi^0)_i, \nu_i) > 0$ Loop: \longrightarrow Calculate d^k s.t. $DG(\psi^k)d^k = G(\psi^k) - \nu$ and $\sum_i d^k_i = 0$ $\longrightarrow \psi^{k+1} := \psi^k - d^k$

Equation $\rho(\operatorname{Lag}_i(\psi)) = \nu_i$ for all i

We define $G: \mathbb{R}^N \to \mathbb{R}^N$ by $G(\psi) = (\rho(\operatorname{Lag}_i(\psi)))_{1 \le i \le N}$

Equation $G(\psi) = \nu$

Remark: G is invariant by addition of a vector $\lambda(1, \dots, 1)$.

Newton algorithm: for solving $G(\psi) = \nu$ Input: $\psi^0 \in \mathbb{R}^N$ s.t. $\varepsilon := \frac{1}{2} \min_i \min(G(\psi^0)_i, \nu_i) > 0$ Loop: \longrightarrow Calculate d^k s.t. $DG(\psi^k)d^k = G(\psi^k) - \nu$ and $\sum_i d^k_i = 0$ $\longrightarrow \psi^{k+1} := \psi^k - d^k$

Local convergence : if ψ^0 is close to a solution ψ^* , then it converges.

Equation $\rho(\operatorname{Lag}_i(\psi)) = \nu_i$ for all i

We define $G: \mathbb{R}^N \to \mathbb{R}^N$ by $G(\psi) = (\rho(\operatorname{Lag}_i(\psi)))_{1 \le i \le N}$

Equation $G(\psi) = \nu$

Remark: G is invariant by addition of a vector $\lambda(1, \cdots, 1)$.

Newton algorithm: for solving $G(\psi) = \nu$ Input: $\psi^0 \in \mathbb{R}^N$ s.t. $\varepsilon := \frac{1}{2} \min_i \min(G(\psi^0)_i, \nu_i) > 0$ Loop: \longrightarrow Calculate d^k s.t. $DG(\psi^k)d^k = G(\psi^k) - \nu$ and $\sum_i d^k_i = 0$ $\longrightarrow \psi^{k+1} := \psi^k - d^k$

Local convergence : if ψ^0 is close to a solution ψ^* , then it converges. How about global convergence ?

Remark: If $\text{Lag}_i(\psi) = \emptyset$ then $DG_i(\psi) = 0$ locally and d^k not unique.

We want to enforce $\operatorname{Lag}_i(\psi^k) \neq \emptyset$.

Equation $G(\psi) = \nu$ where $G(\psi) = (\rho(\operatorname{Lag}_i(\psi)))_{1 \le i \le N}$ Admissible domain: $E_{\varepsilon} := \{\psi \in \mathbb{R}^N; \forall i, \rho(\operatorname{Lag}_i(\psi) \ge \varepsilon\}$

 $\rho(\operatorname{Lag}_i(\psi)) \ge \varepsilon$

Equation $G(\psi) = \nu$ where $G(\psi) = (\rho(\text{Lag}_i(\psi)))_{1 \le i \le N}$

Admissible domain: $E_{\varepsilon} := \{\psi \in \mathbb{R}^N; \forall i, \rho(\operatorname{Lag}_i(\psi) \geq \varepsilon\}$

Damped Newton algorithm: for solving $G(\psi) = \nu$ Input: $\psi^0 \in \mathbb{R}^N$ s.t. $\varepsilon := \frac{1}{2} \min_i \min(G(\psi^0)_i, \nu_i) > 0$ Loop: \rightarrow Calculate d^k s.t. $DG(\psi^k)d^k = G(\psi^k) - \nu$ and $\sum_i d^k_i = 0$ \rightarrow Define $\psi^{k,\tau} = \psi^k - \tau d^k$ $\rightarrow \tau^k = \max\{\tau \in 2^{-\mathbb{N}} \mid \psi^{k\tau} \in E_{\varepsilon} \text{ and } \|G(\psi^{k\tau}) - \nu\| \le (1 - \frac{\tau}{2}) \|G(\psi^k) - \nu\|\}$ $\rightarrow \psi_{k+1} := \psi_k - \tau^k d^k$

 $\rho(\operatorname{Lag}_{i}(\psi)) \geq \varepsilon$

Equation $G(\psi) = \nu$ where $G(\psi) = (\rho(\text{Lag}_i(\psi)))_{1 \le i \le N}$

Admissible domain: $E_{\varepsilon} := \{ \psi \in \mathbb{R}^N; \forall i, \rho(\operatorname{Lag}_i(\psi) \geq \varepsilon \}$

Damped Newton algorithm: for solving $G(\psi) = \nu$ Input: $\psi^0 \in \mathbb{R}^N$ s.t. $\varepsilon := \frac{1}{2} \min_i \min(G(\psi^0)_i, \nu_i) > 0$ Loop: \rightarrow Calculate d^k s.t. $DG(\psi^k)d^k = G(\psi^k) - \nu$ and $\sum_i d^k_i = 0$ \rightarrow Define $\psi^{k,\tau} = \psi^k - \tau d^k$ $\rightarrow \tau^k = \max\{\tau \in 2^{-\mathbb{N}} \mid \psi^{k\tau} \in E_{\varepsilon} \text{ and } |G(\psi^{k\tau}) - \nu|| \le (1 - \frac{\tau}{2})||G(\psi^k) - \nu||\}$ $\rightarrow \psi_{k+1} := \psi_k - \tau^k d^k$

 $\rho(\operatorname{Lag}_{i}(\psi)) \geq \varepsilon$

Remark: The damped Newton's algorithm converges **globally** provided that: (Smoothness): G is \mathcal{C}^1 on E_{ε} .

Equation $G(\psi) = \nu$ where $G(\psi) = (\rho(\text{Lag}_i(\psi)))_{1 \le i \le N}$

Admissible domain: $E_{\varepsilon} := \{ \psi \in \mathbb{R}^N; \forall i, \rho(\operatorname{Lag}_i(\psi) \geq \varepsilon \}$

Damped Newton algorithm: for solving $G(\psi) = \nu$ Input: $\psi^0 \in \mathbb{R}^N$ s.t. $\varepsilon := \frac{1}{2} \min_i \min(G(\psi^0)_i, \nu_i) > 0$ Loop: \rightarrow Calculate d^k s.t. $DG(\psi^k)d^k = G(\psi^k) - \nu$ and $\sum_i d^k_i = 0$ \rightarrow Define $\psi^{k,\tau} = \psi^k - \tau d^k$ $\rightarrow \tau^k = \max\{\tau \in 2^{-\mathbb{N}} \mid \psi^{k\tau} \in E_{\varepsilon} \text{ and } \|G(\psi^{k\tau}) - \nu\| \le (1 - \frac{\tau}{2}) \|G(\psi^k) - \nu\|\}$ $\rightarrow \psi_{k+1} := \psi_k - \tau^k d^k$

 $\rho(\operatorname{Lag}_{i}(\psi)) \geq \varepsilon$

Remark: The damped Newton's algorithm converges **globally** provided that: **(Smoothness):** G is C^1 on E_{ε} . **(Strict monotonicity):** $\forall \psi \in E_{\varepsilon}$, $DG(\psi)$ is neg. definite on $E_{\varepsilon} \cap \{cst\}^{\perp}$ cf [Mirebeau '15]

23 - 5

Equation $G(\psi) = \nu$ where $G(\psi) = (\rho(\text{Lag}_i(\psi)))_{1 \le i \le N}$

Admissible domain: $E_{\varepsilon} := \{ \psi \in \mathbb{R}^N; \forall i, \rho(\operatorname{Lag}_i(\psi) \geq \varepsilon \}$

Damped Newton algorithm: for solving $G(\psi) = \nu$ Input: $\psi^0 \in \mathbb{R}^N$ s.t. $\varepsilon := \frac{1}{2} \min_i \min(G(\psi^0)_i, \nu_i) > 0$ Loop: \rightarrow Calculate d^k s.t. $DG(\psi^k)d^k = G(\psi^k) - \nu$ and $\sum_i d^k_i = 0$ \rightarrow Define $\psi^{k,\tau} = \psi^k - \tau d^k$ $\rightarrow \tau^k = \max\{\tau \in 2^{-\mathbb{N}} \mid \psi^{k\tau} \in E_\varepsilon\}$ and $[G(\psi^{k\tau}) - \nu|| \le (1 - \frac{\tau}{2})||G(\psi^k) - \nu||\}$ $\rightarrow \psi_{k+1} := \psi_k - \tau^k d^k$

 $\rho(\operatorname{Lag}_{i}(\psi)) \geq \varepsilon$

Remark: The damped Newton's algorithm converges **globally** provided that: **(Smoothness):** G is C^1 on E_{ε} . **(Strict monotonicity):** $\forall \psi \in E_{\varepsilon}$, $DG(\psi)$ is neg. definite on $E_{\varepsilon} \cap \{cst\}^{\perp}$ cf [Mirebeau '15]

 \Rightarrow We have to show smoothness and strict monotonicity

we have $G_i(\psi) = \rho(Lag_i(\psi)) \quad c(x, y) := ||x - y||^2$

Proposition: For $\psi \in E_{\varepsilon}$, and assuming that $\rho \in \mathcal{C}_{c}^{0}(\mathbb{R}^{d})$ one has

we have $G_i(\psi) = \rho(\operatorname{Lag}_i(\psi)) \quad c(x,y) := \|x - y\|^2$

Proposition: For $\psi \in E_{\varepsilon}$, and assuming that $\rho \in \mathcal{C}_{c}^{0}(\mathbb{R}^{d})$ one has

(A)
$$\frac{\partial G_i}{\partial \psi_j}(\psi) = \frac{1}{2\|y_i - y_j\|} \int_{\operatorname{Lag}_{ij}(\psi)} \rho(x) \, \mathrm{d} x(\mathsf{B}) \quad \frac{\partial G_i}{\partial \psi_i}(\psi) = -\sum_{j \neq i} \frac{\partial G_i}{\partial \psi_j}(\psi)$$
$$\underbrace{\int_{j \neq i} \operatorname{Lag}_{ij}(\psi) := \operatorname{Lag}_i(\psi) \cap \operatorname{Lag}_j(\psi)$$

Intuition of the proof:

we have $G_i(\psi) = \rho(\text{Lag}_i(\psi)) \quad c(x, y) := ||x - y||^2$

Proposition: For $\psi \in E_{\varepsilon}$, and assuming that $\rho \in \mathcal{C}_{c}^{0}(\mathbb{R}^{d})$ one has

we have $G_i(\psi) = \rho(\text{Lag}_i(\psi)) \quad c(x, y) := ||x - y||^2$

Proposition: For $\psi \in E_{\varepsilon}$, and assuming that $\rho \in \mathcal{C}_{c}^{0}(\mathbb{R}^{d})$ one has

we have $G_i(\psi) = \rho(\text{Lag}_i(\psi)) \quad c(x, y) := ||x - y||^2$

Proposition: For $\psi \in E_{\varepsilon}$, and assuming that $\rho \in \mathcal{C}_{c}^{0}(\mathbb{R}^{d})$ one has

we have $G_i(\psi) = \rho(\text{Lag}_i(\psi)) \quad c(x, y) := ||x - y||^2$

Proposition: For $\psi \in E_{\varepsilon}$, and assuming that $\rho \in \mathcal{C}_{c}^{0}(\mathbb{R}^{d})$ one has (A) $\frac{\partial G_{i}}{\partial \psi_{j}}(\psi) = \frac{1}{2\|y_{i}-y_{j}\|} \int_{\operatorname{Lag}_{ij}(\psi)} \rho(x) \, \mathrm{d} x(\mathsf{B}) \quad \frac{\partial G_{i}}{\partial \psi_{i}}(\psi) = -\sum_{j \neq i} \frac{\partial G_{i}}{\partial \psi_{j}}(\psi)$

 $\operatorname{Lag}_{ij}(\psi) := \operatorname{Lag}_i(\psi) \cap \operatorname{Lag}_j(\psi)$

Continuity of $\frac{\partial G_i}{\partial \psi_i}(\psi)$

When t varies, $\frac{\partial G_i}{\partial \psi_j}(\psi_t)$ increases ... and then suddenly vanishes.

 \rightsquigarrow we require $-\rho(\operatorname{Lag}_i(\psi)) > 0$ at all times

or a genericity condition (three points not aligned)

Recall:
$$\frac{\partial G_i}{\partial \psi_j}(\psi) = \int_{\text{Lag}_{ij}(\psi)} \frac{\rho(x) \, dx}{2 \| y_i - y_j \|} \qquad \frac{\partial G_i}{\partial \psi_i}(\psi) = -\sum_{j \neq i} \frac{\partial G_i}{\partial \psi_j}(\psi)$$
$$\text{Lag}_{ij}(\psi) := \text{Lag}_i(\psi) \cap \text{Lag}_j(\psi)$$
$$\bullet \text{ Consider the matrix } (L_{ij}) := \frac{\partial G_i}{\partial \psi_j}(\psi) \text{ and the graph } H:$$
$$(y_i, y_j) \in H \iff L_{ij} > 0 \iff \text{Lag}_{ij}(\psi) \cap \{\rho > 0\} \neq \emptyset.$$

Recall:
$$\frac{\partial G_i}{\partial \psi_j}(\psi) = \int_{\text{Lag}_{ij}(\psi)} \frac{\rho(x) \, dx}{2 || y_i - y_j ||}} \qquad \frac{\partial G_i}{\partial \psi_i}(\psi) = -\sum_{j \neq i} \frac{\partial G_i}{\partial \psi_j}(\psi)$$

 $\text{Lag}_{ij}(\psi) := \text{Lag}_i(\psi) \cap \text{Lag}_j(\psi)$
 $\text{Consider the matrix } (L_{ij}) := \frac{\partial G_i}{\partial \psi_j}(\psi) \text{ and the graph } H:$
 $(y_i, y_j) \in H \iff L_{ij} > 0 \iff \text{Lag}_{ij}(\psi) \cap \{\rho > 0\} \neq \emptyset.$
 $\text{If } \{\rho > 0\} \text{ is connected and } \psi \in E_{\varepsilon}, \text{ then } H \text{ is connected.}$

$$\begin{aligned} & \operatorname{Recall:} \frac{\partial G_i}{\partial \psi_j}(\psi) = \underbrace{\int_{\operatorname{Lag}_{ij}(\psi)} \frac{\rho(x) \, \mathrm{d} \, x}{2 \| y_i - y_j \|}}_{2 \| y_i - y_j \|} & \frac{\partial G_i}{\partial \psi_i}(\psi) = -\sum_{j \neq i} \frac{\partial G_i}{\partial \psi_j}(\psi) \\ & \operatorname{Lag}_{ij}(\psi) := \operatorname{Lag}_i(\psi) \cap \operatorname{Lag}_j(\psi) \\ & \operatorname{Consider the matrix} (L_{ij}) := \frac{\partial G_i}{\partial \psi_j}(\psi) \text{ and the graph } H: \\ & (y_i, y_j) \in H \iff L_{ij} > 0 \iff \operatorname{Lag}_{ij}(\psi) \cap \{\rho > 0\} \neq \emptyset. \end{aligned}$$

$$& \operatorname{If} \{\rho > 0\} \text{ is connected and } \psi \in E_{\varepsilon}, \text{ then } H \text{ is connected} \\ & \operatorname{Ker}(L) = \{cst\} = \mathbb{R} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \end{aligned}$$

we have $G_i(\psi) = \rho(\operatorname{Lag}_i(\psi))$

Recall:
$$\frac{\partial G_i}{\partial \psi_j}(\psi) = \int_{\text{Lag}_{ij}(\psi)} \frac{\rho(x) \, dx}{2||y_i - y_j||} \qquad \frac{\partial G_i}{\partial \psi_i}(\psi) = -\sum_{j \neq i} \frac{\partial G_i}{\partial \psi_j}(\psi)$$

 $\text{Lag}_{ij}(\psi) := \text{Lag}_i(\psi) \cap \text{Lag}_j(\psi)$
• Consider the matrix $(L_{ij}) := \frac{\partial G_i}{\partial \psi_j}(\psi)$ and the graph H :
 $(y_i, y_j) \in H \iff L_{ij} > 0 \iff \text{Lag}_{ij}(\psi) \cap \{\rho > 0\} \neq \emptyset.$
• If $\{\rho > 0\}$ is connected and $\psi \in E_{\varepsilon}$, then H is connected
• Ker $(L) = \{cst\} = \mathbb{R}\begin{pmatrix} 1\\ \vdots\\ 1 \end{pmatrix}$
Proposition: Assume $\rho \in C_c^0(\mathbb{R}^d)$ and $\{\rho > 0\}$ connected. Then,

 $\forall \psi \in \underline{E}_{\varepsilon}, \ \forall v \in \{cst\}^{\perp} \ \langle DG(\psi)v|v\rangle < 0$

25 - 5 \longrightarrow we require connectedness conditions on ρ

Convergence in the quadratic case

Theorem: Let X be a (closed) convex bounded domain of \mathbb{R}^d with $Y \subset \mathbb{R}^d$ be a finite set, ρ of class C^1 and $\{\rho > 0\}$ connected.

Then, the damped Newton algorithm for SD-OT converges **globally** with linear rate and locally with quadratic rate.

$$\|G(\psi^{k+1}) - \nu\| \le \left(1 - \frac{\tau^*}{2}\right)^2 \|G(\psi^k) - \nu\|$$

[Kitagawa, Mérigot, T., JEMS 2017]

Convergence in the quadratic case

Theorem: Let X be a (closed) convex bounded domain of \mathbb{R}^d with $Y \subset \mathbb{R}^d$ be a finite set, ρ of class C^1 and $\{\rho > 0\}$ connected.

Then, the damped Newton algorithm for SD-OT converges **globally** with linear rate and locally with quadratic rate.

$$\|G(\psi^{k+1}) - \nu\| \le \left(1 - \frac{\tau^*}{2}\right)^2 \|G(\psi^k) - \nu\|$$

[Kitagawa, Mérigot, T., JEMS 2017]

- Holds when $X \subset M$ Riemannian manifold, $c \in C^2$ satistifes Twist, MTW.

Convergence in the quadratic case

Theorem: Let X be a (closed) convex bounded domain of \mathbb{R}^d with $Y \subset \mathbb{R}^d$ be a finite set, ρ of class C^1 and $\{\rho > 0\}$ connected.

Then, the damped Newton algorithm for SD-OT converges **globally** with linear rate and locally with quadratic rate.

$$\|G(\psi^{k+1}) - \nu\| \le \left(1 - \frac{\tau^*}{2}\right)^2 \|G(\psi^k) - \nu\|$$

[Kitagawa, Mérigot, T., JEMS 2017]

 Holds when X ⊂ M Riemannian manifold, c ∈ C² satistifes Twist, MTW.
 Holds when X ⊂ ℝ^d, c satistifes Twist. No convexity assumption but genericity conditions [Mérigot, T., 2020]

Exemple: ρ uniform on $X = [0, 1]^2$; $\nu = \frac{1}{N} \sum_i \delta_{y_i}$

Exemple: ρ uniform on $X = [0, 1]^2$; $\nu = \frac{1}{N} \sum_i \delta_{y_i}$

diagramme de Laguerre

$$\|G(\psi^0) - \nu\|_1$$

$$\simeq 1.8$$

Exemple: ρ uniform on $X = [0, 1]^2$; $\nu = \frac{1}{N} \sum_i \delta_{y_i}$

diagramme de Laguerre

$$\|G(\psi^0) - \nu\|_1$$

$$\simeq 1.8$$

Exemple: ρ uniform on $X = [0, 1]^2$; $\nu = \frac{1}{N} \sum_i \delta_{y_i}$

diagramme de Laguerre

27 - 4

 $\simeq 0.6$

Source: PL density on $X = [0,3]^2$ **Target:** Uniform grid Y in $[0,1]^2$.

 $Lag(\psi^8)$

Source: PL density on $X = [0,3]^2$ **Target:** Uniform grid Y in $[0,1]^2$.

 \blacktriangleright The damped Newton's algorithm converges even when ρ vanishes.

 $Lag(\psi^8)$

Source: PL density on $X = [0,3]^2$ **Target:** Uniform grid Y in $[0,1]^2$.

- > The damped Newton's algorithm converges even when ρ vanishes.
- > $N = 10^7$ pb solved in 17 iterations.psdot (python); geogram

Outline

- ► Case 1: mirror for point light source
- Case 2: mirror for collimated source light
- Optimal transport
- Semi-discrete optimal transport
- Damped Newton algorithm
- Non-imaging optics: Far-Field target
- Non-imaging optics: Near-Field target

Mirror / Point light source: implementation

Mirror / Point light source: implementation

Newton schemes:

Computation of descent direction / time step

Newton schemes:

Computation of descent direction / time step

Evaluation of *G* and *DG*:

$$\int_{V_i} \mathrm{d}\,\mu(x) \qquad \int_{V_{ij}} \mathrm{d}\,\mu(x)$$

Newton schemes:

Computation of descent direction / time step

Evaluation of *G* and *DG*:

$$\int_{V_i} \mathrm{d}\,\mu(x) \qquad \int_{V_{ij}} \mathrm{d}\,\mu(x)$$

Main difficulty: computation of visibility cells V_i

Computation of Visibility (Laguerre) cells

Definition: Given $P = \{p_i\}_{1 \le i \le N} \subseteq \mathbb{R}^d$ and $(\omega_i)_{1 \le i \le N} \in \mathbb{R}^N$ $\operatorname{Pow}_P^{\omega}(p_i) := \{x \in \mathbb{R}^d; i = \arg\min_j ||x - p_j||^2 + \omega_j\}$

Computation of Visibility (Laguerre) cells

Definition: Given
$$P = \{p_i\}_{1 \le i \le N} \subseteq \mathbb{R}^d$$
 and $(\omega_i)_{1 \le i \le N} \in \mathbb{R}^N$
 $\operatorname{Pow}_P^{\omega}(p_i) := \{x \in \mathbb{R}^d; i = \arg\min_j ||x - p_j||^2 + \omega_j\}$

▶ Efficient computation of $(Pow_P^{\omega}(p_i))_i$ using CGAL (d = 2, 3)

Computation of Visibility (Laguerre) cells

Definition: Given
$$P = \{p_i\}_{1 \le i \le N} \subseteq \mathbb{R}^d$$
 and $(\omega_i)_{1 \le i \le N} \in \mathbb{R}^N$
 $\operatorname{Pow}_P^{\omega}(p_i) := \{x \in \mathbb{R}^d; i = \arg\min_j \|x - p_j\|^2 + \omega_j\}$

▶ Efficient computation of $(Pow_P^{\omega}(p_i))_i$ using CGAL (d = 2, 3)

Lemma: With
$$\vec{\psi} = \log(\vec{\kappa})$$
, $p_i := -\frac{y_j}{2\kappa_j}$ and $\omega_i := -\|\frac{y_j}{2\kappa_j}\|^2 - \frac{1}{\kappa_i}$,
 $V_i(\kappa) = \operatorname{Pow}_P^{\omega}(p_i) \cap \mathbb{S}^2$

Mirror / Point light source

 $\mu = \text{uniform}$ measure on half-sphere \mathbb{S}^2_+

Mirror / Point light source

Point source

 $V_i(\psi) = \operatorname{Pow}(p_i) \cap \mathbb{S}^2$ 32 - 2

targeted image $N=400\times480$

 \frown

targeted image $N = 400 \times 480$

Mirror
$$\mathcal{R}$$

 $V_i(\psi) = \operatorname{Pow}(p_i) \cap (\mathbb{R}^2 \times \{0\})$

light source

targeted image $N=400\times480$

We solve 8 optical problems with one program $\rightsquigarrow V_i(\psi) = \operatorname{Pow}(p_i) \cap X$ where $X = \mathbb{S}^2, \mathbb{R}^2 \times \{0\}$ \rightsquigarrow Automatic differentiation

mesh of the mirror

Image rendered with $\ensuremath{\mathrm{LUXRENDER}}$

Outline

- ► Case 1: mirror for point light source
- Case 2: mirror for collimated light source
- Optimal transport
- Semi-discrete optimal transport
- Damped Newton algorithm
- Non-imaging optics: Far-Field target
- Non-imaging optics: Near-Field target

Putting three copies of the same lens shifted by h...

37 - 1

Putting three copies of the same lens shifted by h...

 \dots produces a superposition of images shifted by h.

37 - 2

Putting three copies of the same lens shifted by h...

 \dots produces a superposition of images shifted by h.

Putting three copies of the same lens shifted by h...

37 -

 \dots produces a superposition of images shifted by h.

One wants to produce images at finite distance \longrightarrow near-field problem.

NF pb: Build a component \mathcal{R} sending light towards $z_1, \ldots, z_N \in \{D\} \times \mathbb{R}^2$ (instead of $y_1, \ldots, y_N \in \mathbb{S}^2$))

NF pb: Build a component \mathcal{R} sending light towards $z_1, \ldots, z_N \in \{D\} \times \mathbb{R}^2$ We approximate solutions to the NF problem using a sequence of FF pb.

Step 0: Solve far-field problem with target $y_i^{(0)} = z_i / ||z_i||$

NF pb: Build a component \mathcal{R} sending light towards $z_1, \ldots, z_N \in \{D\} \times \mathbb{R}^2$ We approximate solutions to the NF problem using a sequence of FF pb.

Step 0: Solve far-field problem with target $y_i^{(0)} = z_i / ||z_i||$

NF pb: Build a component \mathcal{R} sending light towards $z_1, \ldots, z_N \in \{D\} \times \mathbb{R}^2$ We approximate solutions to the NF problem using a sequence of FF pb.

Step 0: Solve far-field problem with target $y_i^{(0)} = z_i / ||z_i||$

NF pb: Build a component \mathcal{R} sending light towards $z_1, \ldots, z_N \in \{D\} \times \mathbb{R}^2$ We approximate solutions to the NF problem using a sequence of FF pb.

Step 0: Solve far-field problem with target $y_i^{(0)} = z_i / ||z_i||$ **Step 1:** Solve far-field problem with target $y_i^{(1)} = (z_i - b_i^{(0)}) / ||z_i - b_i^{(0)}||$

NF pb: Build a component \mathcal{R} sending light towards $z_1, \ldots, z_N \in \{D\} \times \mathbb{R}^2$ We approximate solutions to the NF problem using a sequence of FF pb.

Step 0: Solve far-field problem with target $y_i^{(0)} = z_i / ||z_i||$ **Step 1:** Solve far-field problem with target $y_i^{(1)} = (z_i - b_i^{(0)}) / ||z_i - b_i^{(0)}||$

Convergence of the algorithm

Target

1st iteration

2nd iteration

5th iteration

size	k = 1	k = 2	k = 3	k = 4	Total $(k = 6)$
128^2	9s	9s	6s	2s	31s
256^{2}	38s	61s	38s	31s	228s
512^2	245s	294s	240s	194s	1303s
1024^2	1598s	2095s	1586s	1489s	9077s

Pillows

Pillows

40 - 2

Pillows

Color channels

Color channels

Physical prototypes

42 - 1

Physical prototypes

42 - 2

Physical prototypes

42 - 3

Conclusion

We solved 4 inverse problems arising in nonimaging optics using semi-discrete approach and optimal transport

- Each problem is a Monge-Ampère equation
- For far-field target, OT problem on \mathbb{R}^2 or $\mathbb{S}^2 \rightsquigarrow \text{Newton algorithm}$
- Iterative procedure for real-life light target

Conclusion

We solved 4 inverse problems arising in nonimaging optics using semi-discrete approach and optimal transport

- Each problem is a Monge-Ampère equation
- For far-field target, OT problem on \mathbb{R}^2 or $\mathbb{S}^2 \rightsquigarrow \text{Newton algorithm}$
- Iterative procedure for real-life light target

Ongoing work

→ Generalization to generated jacobian equations (application to optics, near field target) : Anatole Gallouet's talk

- → Extended light (Jean-Baptiste Keck post-doc)
- → Metasurfaces (with Cristian Gutierrez)

Conclusion

We solved 4 inverse problems arising in nonimaging optics using semi-discrete approach and optimal transport

- Each problem is a Monge-Ampère equation
- For far-field target, OT problem on \mathbb{R}^2 or $\mathbb{S}^2 \rightsquigarrow \text{Newton algorithm}$
- Iterative procedure for real-life light target

Ongoing work

→ Generalization to generated jacobian equations (application to optics, near field target) : Anatole Gallouet's talk

- → Extended light (Jean-Baptiste Keck post-doc)
- → Metasurfaces (with Cristian Gutierrez)

Thank you!