Numerical resolution of Monge-Ampère equations arising in optics

Boris Thibert

Digital Geometry and Discrete Variational Calculus Joint works with Quentin Mérigot and Jocelyn Meyron
Digital Geometry and Discrete Variational Calculu:
Luminy (CIRM) - April 1 2021

 $1 - 1$

Numerical resolution of Monge-Ampère equations arising in optics

Boris Thibert

 $1 - 2$

Digital Geometry and Discrete Variational Calculus

Numerical resolution of Monge-Ampère equations arising in optics

Boris Thibert

1 - 3

Digital Geometry and Discrete Variational Calculus

-
-
-

Goal: Find a surface S such that the reflection of X onto Y preserves f.

Target illumination with intensity ν

No one-to-one map given

ν

Input: Light source with intensity μ Target illumination with intensity ν

Outline

- ▶ Case 1: mirror for point light source
- Case 2: mirror for collimated light source
-
- Semi-discrete optimal transport
-
- Optimal transport
Semi-discrete optimal transport
Damped Newton algorithm
Non-imaging optics: Far-Field target
- Non-imaging optics: Near-Field target

Goal: Find a surface R which sends (\mathbb{S}_o^2) $_{o}^{2},\mu)$ to $\left\{ \Theta_{\infty}, \nu \right\}$ under reflection by Snell's law.

Goal: Find a surface R which sends (\mathbb{S}_o^2) $_{o}^{2},\mu)$ to $\begin{array}{c|c|c} \hline o \end{array}$ $\begin{array}{c|c} \hline \end{array}$ $\begin{array}{c} \hline \end{array}$ (S_∞, ν) under reflection by Snell's law.

> ▶ R is parameterized by $x \in \mathbb{S}^2_0$ $\frac{2}{0} \mapsto x$ u (x) where $\mathbf{u}:\mathbb{S}^2_0$ $_0^2\to\mathbb{R}$

Goal: Find a surface R which sends (\mathbb{S}_o^2) $_{o}^{2},\mu)$ to $\begin{array}{c|c|c|c} \hline \begin{array}{ccc} \hline \begin{array}{ccc} \hline \begin{array}{ccc} \hline \hline \begin{array}{ccc} \hline \hline \end{array} & \hline \end{array} & \begin{array}{ccc} \hline \begin{array}{ccc} \hline \hline \end{array} & \hline \end{array} & \begin{array}{ccc} \hline \begin{array}{ccc} \hline \hline \end{array} & \hline \end{array} & \begin{array}{ccc} \hline \begin{array}{ccc} \hline \hline \end{array} & \hline \end{array} & \begin{array}{ccc} \hline \begin{array}{ccc} \hline \hline \end{array} &$

- ▶ R is parameterized by $x \in \mathbb{S}^2_0$ $\frac{2}{0} \mapsto x$ u (x) where $\mathbf{u}:\mathbb{S}^2_0$ $_0^2\to\mathbb{R}$
	- Snell's law $T_{\mathbf{u}}: x \in \mathbb{S}^2_0$ $\frac{2}{0} \mapsto y = x - 2\langle x | n_{\bf u} \rangle n_{\bf u}$

Goal: Find a surface R which sends (\mathbb{S}_o^2) $_{o}^{2},\mu)$ to $\begin{array}{c|c|c|c} \hline \begin{array}{ccc} \hline \begin{array}{ccc} \hline \begin{array}{ccc} \hline \hline \begin{array}{ccc} \hline \hline \end{array} & \hline \end{array} & \begin{array}{ccc} \hline \begin{array}{ccc} \hline \hline \end{array} & \hline \end{array} & \begin{array}{ccc} \hline \begin{array}{ccc} \hline \hline \end{array} & \hline \end{array} & \begin{array}{ccc} \hline \begin{array}{ccc} \hline \hline \end{array} & \hline \end{array} & \begin{array}{ccc} \hline \begin{array}{ccc} \hline \hline \end{array} &$

> ▶ R is parameterized by $x \in \mathbb{S}^2_0$ $\frac{2}{0} \mapsto x$ u (x) where $\mathbf{u}:\mathbb{S}^2_0$ $_0^2\to\mathbb{R}$

$$
\blacktriangleright \text{ Snell's law} \newline T_{\mathbf{u}}: x \in \mathbb{S}^2_0 \mapsto y = x - 2\langle x | n_{\mathbf{u}} \rangle n_{\mathbf{u}}
$$

Brenier formulation $T_{\sharp}\mu=\nu$

Goal: Find a surface R which sends (\mathbb{S}_o^2) $_{o}^{2},\mu)$ to $\begin{array}{c|c|c|c} \hline \begin{array}{ccc} \hline \begin{array}{ccc} \hline \begin{array}{ccc} \hline \hline \begin{array}{ccc} \hline \hline \end{array} & \hline \end{array} & \begin{array}{ccc} \hline \begin{array}{ccc} \hline \hline \end{array} & \hline \end{array} & \begin{array}{ccc} \hline \begin{array}{ccc} \hline \hline \end{array} & \hline \end{array} & \begin{array}{ccc} \hline \begin{array}{ccc} \hline \hline \end{array} & \hline \end{array} & \begin{array}{ccc} \hline \begin{array}{ccc} \hline \hline \end{array} &$

> ▶ R is parameterized by $x \in \mathbb{S}^2_0$ $\frac{2}{0} \mapsto x$ u (x) where $\mathbf{u}:\mathbb{S}^2_0$ $_0^2\to\mathbb{R}$

$$
\blacktriangleright \text{ Snell's law}
$$

$$
T_{\mathbf{u}}: x \in \mathbb{S}_0^2 \mapsto y = x - 2\langle x | n_{\mathbf{u}} \rangle n_{\mathbf{u}}
$$

Brenier formulation $T_{\sharp}\mu=\nu$ i.e. for every borelian B $\mu(T^{-1}(B)) = \nu(B)$

Goal: Find a surface R which sends (\mathbb{S}_o^2) $_{o}^{2},\mu)$ to (S_{∞}, ν) under reflection by Snell's law.

- ▶ R is parameterized by $x \in \mathbb{S}^2_0$ $\frac{2}{0} \mapsto x$ u (x) where $\mathbf{u}:\mathbb{S}^2_0$ $_0^2\to\mathbb{R}$
- \blacktriangleright Snell's law $T_{\mathbf{u}}: x \in \mathbb{S}^2_0$ $\frac{2}{0} \mapsto y = x - 2\langle x | n_{\bf u} \rangle n_{\bf u}$

Change of variable $g(T(x)) \det(DT(x)) = f(x)$

Brenier formulation $T_{\sharp}\mu=\nu$ i.e. for every borelian B $\mu(T^{-1}(B)) = \nu(B)$

Goal: Find a surface R which sends (\mathbb{S}_o^2) $_{o}^{2},\mu)$ to (S_{∞}, ν) under reflection by Snell's law.

▶ R is parameterized by $x \in \mathbb{S}^2_0$ $\frac{2}{0} \mapsto x$ u (x) where $\mathbf{u}:\mathbb{S}^2_0$ $_0^2\to\mathbb{R}$

$$
\blacktriangleright \text{ Snell's law}
$$

$$
T_{\mathbf{u}}: x \in \mathbb{S}_0^2 \mapsto y = x - 2\langle x | n_{\mathbf{u}} \rangle n_{\mathbf{u}}
$$

 $\frac{2}{0} \rightarrow \mathbb{R}^+$ s.t.

Monge-Ampère equation Find **u** :
$$
S_0^2
$$

\n
$$
\begin{cases}\ng(T_{\mathbf{u}}(x)) \det(DT_{\mathbf{u}}(x)) = f(x) \\
T_{\mathbf{u}}(x) = x - \langle x | n_{\mathbf{u}}(x) \rangle n_{\mathbf{u}}(x) \\
n_{\mathbf{u}}(x) = \frac{\nabla \mathbf{u}(x) - \mathbf{u}(x)x}{\sqrt{\|\nabla \mathbf{u}(x)\|^2 + \mathbf{u}(x)^2}}\n\end{cases}
$$
\nwith boundary and other conditions

 $\sqrt{ }$

 \int

 $\overline{\mathcal{L}}$

Goal: Find a surface R which sends (\mathbb{S}_o^2) $_{o}^{2},\mu)$ to $(\mathbb{S}_{\infty}, \nu)$ under reflection by Snell's law.

▶ R is parameterized by $x \in \mathbb{S}^2_0$ $\frac{2}{0} \mapsto x$ u (x) where $\mathbf{u}:\mathbb{S}^2_0$ $_0^2\to\mathbb{R}$

$$
\blacktriangleright \text{ Snell's law} \newline T_{\mathbf{u}}: x \in \mathbb{S}^2_0 \mapsto y = x - 2\langle x|n_{\mathbf{u}}\rangle n_{\mathbf{u}}
$$

 $\frac{2}{0} \rightarrow \mathbb{R}^+$ s.t.

Monge-Ampère equation Find **u** :
$$
S_0^2
$$

\n
$$
\begin{cases}\ng(T_{\mathbf{u}}(x)) \det(DT_{\mathbf{u}}(x)) = f(x) \\
T_{\mathbf{u}}(x) = x - \langle x | n_{\mathbf{u}}(x) \rangle n_{\mathbf{u}}(x) \\
n_{\mathbf{u}}(x) = \frac{\nabla \mathbf{u}(x) - \mathbf{u}(x)x}{\sqrt{\|\nabla \mathbf{u}(x)\|^2 + \mathbf{u}(x)^2}}\n\end{cases}
$$
\n
$$
\text{with boundary and other conditions}
$$

Existence of weak solutions
Caffarelli & Oliker 94

Punctual light at origin o , μ measure on \mathbb{S}^2 o

Prescribed far-field:
$$
\nu = \nu_1 \delta_{y_1}
$$
 on \mathbb{S}^2_{∞}

Punctual light at origin o , μ measure on \mathbb{S}^2 o Prescribed far-field: $\nu = \nu_1 \delta_{y_1}$ on \mathbb{S}^2_{∞} ∞ R : paraboloid of direction y_1 and focal O

Punctual light at origin o , μ measure on \mathbb{S}^2 o

Prescribed far-field: $\nu = \sum_i \nu_i \delta_{y_i}$ on ${\cal S}^2_\infty$ ∞

Punctual light at origin o , μ measure on \mathbb{S}^2 o Prescribed far-field: $\nu = \sum_i \nu_i \delta_{y_i}$ on ${\cal S}^2_\infty$ ∞

 $P_i(\kappa_i) =$ solid paraboloid of revolution with focal o , direction y_i and focal distance κ_i

 $R(\vec{\kappa}) = \partial \left(\bigcap_{i=1}^N P_i(\kappa_i)\right)$

Decomposition of \mathbb{S}^2 $\frac{2}{o}$: $\mathrm{V}_i(\vec\kappa) = \pi_{\mathcal{S}_o^2}(R(\vec\kappa) \cap \partial P_i(\kappa_i))$ $=$ directions that are reflected towards y_i .

Decomposition of \mathbb{S}^2 $\frac{2}{\omega}$: $V_i(\vec{\kappa}) = \pi_{\mathcal{S}_o^2}(R(\vec{\kappa}) \cap \partial P_i(\kappa_i))$ $=$ directions that are reflected towards y_i .

Problem (FF): Find $\kappa_1, \ldots, \kappa_N$ such that for every $i, \mu(V_i(\vec{\kappa})) = \nu_i$.

amount of light reflected in direction y_i .

Lemma: With
$$
c(x, y) = -\log(1 - \langle x | y \rangle)
$$
, and $\psi_i := \log(\kappa_i)$,
\n
$$
V_i(\vec{\kappa}) = \{x \in \mathbb{S}_0^2, c(x, y_i) + \psi_i \le c(x, y_j) + \psi_j \quad \forall j\}.
$$

Lemma:	With $c(x, y) = -\log(1 - \langle x y \rangle)$, and $\psi_i := \log(\kappa_i)$,
$V_i(\vec{\kappa}) = \{x \in \mathbb{S}_0^2, c(x, y_i) + \psi_i \le c(x, y_j) + \psi_j \quad \forall j\}$.	

\nProof:

\n $\partial P_i(\kappa_i)$ is parameterized in radial coordinates by

 $\rho_i : x \in \mathbb{S}^2_o$ $\frac{2}{o} \mapsto \frac{\kappa_i}{1-\langle x \rangle}$ $1-\langle x|y_i\rangle$

Lemma: With
$$
c(x, y) = -\log(1 - \langle x | y \rangle)
$$
, and $\psi_i := \log(\kappa_i)$,
\n
$$
V_i(\vec{\kappa}) = \{x \in \mathbb{S}_0^2, c(x, y_i) + \psi_i \le c(x, y_j) + \psi_j \quad \forall j\}.
$$

 (κ_i) is parameterized in radial coordinates by $\rho_i : x \in \mathbb{S}^2_o$ $\frac{2}{o} \mapsto \frac{\kappa_i}{1-\langle x \rangle}$ $1-\langle x|y_i\rangle$

$$
x \in \mathcal{V}_i(\vec{\kappa}) \iff \frac{\kappa_i}{1 - \langle x | y_i \rangle} \le \frac{\kappa_j}{1 - \langle x | y_j \rangle}
$$

Lemma: With
$$
c(x, y) = -\log(1 - \langle x | y \rangle)
$$
, and $\psi_i := \log(\kappa_i)$,
\n
$$
V_i(\vec{\kappa}) = \{x \in \mathbb{S}_0^2, c(x, y_i) + \psi_i \le c(x, y_j) + \psi_j \quad \forall j\}.
$$

 $\begin{aligned}\n\text{Mirror } / \text{ Point light source: Optimal Transport} \\
\text{Lemma: With } c(x, y) = -\log(1 - \langle x | y \rangle), \text{ and } \psi_i := \log(\kappa_i), \\
V_i(\vec{\kappa}) = \{x \in \mathbb{S}_0^2, c(x, y_i) + \psi_i \le c(x, y_j) + \psi_j \quad \forall j\}. \\
P_3\n\end{aligned}$ Proof: ∂P_i(κ_i) is parameterized in radial coordinates by
 $\rho_i : x \in \mathbb{S}_0^2 \map$ (κ_i) is parameterized in radial coordinates by $\iff \frac{\kappa_i}{1-\ell x}$ $1-\langle x|y_i\rangle$ $\leq \frac{\kappa_j}{1-\sqrt{x}}$ $x \in V_i(\vec{\kappa}) \iff \frac{\kappa_i}{1-\langle x|y_i\rangle} \leq \frac{\kappa_j}{1-\langle x|y_j\rangle}$ **Lemma:** With $c(x, y) = -\log(1 - \langle x|y \rangle)$, and $\psi_i := \log(\kappa_i)$,
 $V_i(\vec{\kappa}) = \{x \in \mathbb{S}_0^2, c(x, y_i) + \psi_i \le c(x, y_j) + \psi_j \quad \forall j\}$.
 Proof: $\partial P_i(\kappa_i)$ is parameterized in radial coordinates $\rho_i : x \in \mathbb{S}_0^2 \mapsto \frac{\kappa_i}{1 - \langle x|y_i \rangle}$
 V_2 $\rho_i : x \in \mathbb{S}^2_o$ $\frac{2}{o} \mapsto \frac{\kappa_i}{1-\langle x \rangle}$ $1-\langle x|y_i\rangle$

 $\Longleftrightarrow \log(\kappa_i) - \log(1 - \langle x|y_i \rangle)$

Lemma: With
$$
c(x, y) = -\log(1 - \langle x | y \rangle)
$$
, and $\psi_i := \log(\kappa_i)$,
\n
$$
V_i(\vec{\kappa}) = \{x \in \mathbb{S}_0^2, c(x, y_i) + \psi_i \le c(x, y_j) + \psi_j \quad \forall j\}.
$$

Mirror / Point light source: Optimal Transport		
Lemma: With $c(x, y) = -\log(1 - \langle x y \rangle)$, and $\psi_i := \log(\kappa_i)$,		
$V_i(\vec{\kappa}) = \{x \in \mathbb{S}_0^2, c(x, y_i) + \psi_i \le c(x, y_j) + \psi_j \quad \forall j\}$.		
P_3	Proof: $\partial P_i(\kappa_i)$ is parameterized in radial coordinates by $\rho_i : x \in \mathbb{S}_0^2 \mapsto \frac{\kappa_i}{1 - \langle x y_i \rangle}$	
$V_3(\vec{\kappa})$	$x \in V_i(\vec{\kappa}) \iff \frac{\kappa_i}{1 - \langle x y_i \rangle} \le \frac{\kappa_j}{1 - \langle x y_j \rangle}$	
P_2	ϕ	$\log(\kappa_i) - \log(1 - \langle x y_i \rangle) \le \cdots$
P_1	$\Leftrightarrow \psi_i + c(x, y_i) \le \psi_j + c(x, y_j)$	
9 - 5		
Lemma: With
$$
c(x, y) = -\log(1 - \langle x | y \rangle)
$$
, and $\psi_i := \log(\kappa_i)$,
\n
$$
V_i(\vec{\kappa}) = \{x \in \mathbb{S}_0^2, c(x, y_i) + \psi_i \le c(x, y_j) + \psi_j \quad \forall j\}.
$$

 \rightsquigarrow An optimal transport problem on \mathbb{S}^2

Problem (FF): Find $\kappa_1, \ldots, \kappa_N$ such that for every i, $\mu(V_i(\vec{\kappa})) = \nu_i$.

-

 Case 1: mirror for point light source

 Case 2: mirror for collimated light source

 Optimal transport

 Semi-discrete optimal transport

 Damped Newton algorithm

 Non-imaging optics: Far-Field target

 Non-im
	-
	-
	-
	-
	-
	-

Brenier formulation $(F \circ \nabla u)_\sharp \mu = \nu$ $\Leftrightarrow \forall A \mu((F \circ \nabla \mathbf{u})^{-1}(A)) = \nu(A)$

Brenier formulation $(F \circ \nabla u)_\sharp \mu = \nu$ $\Leftrightarrow \forall B \; \mu((\nabla {\bf u})^{-1}(B)) = \tilde{\nu}(B) \; \; \text{with} \; B = F^{-1}(A) \subset \mathbb{R}^2$ $\Leftrightarrow \forall A \mu((F \circ \nabla \mathbf{u})^{-1}(A)) = \nu(A)$

is reflected in direction $F(\nabla \mathbf{u}(x))$.

Brenier formulation $(F \circ \nabla u)_\sharp \mu = \nu$ $\Leftrightarrow \forall B \; \mu((\nabla {\bf u})^{-1}(B)) = \tilde{\nu}(B) \; \; \text{with} \; B = F^{-1}(A) \subset \mathbb{R}^2$ $\Leftrightarrow \forall A \mu((F \circ \nabla \mathbf{u})^{-1}(A)) = \nu(A)$ $\Leftrightarrow \forall B \; \mu((\nabla \mathbf{u})^{-1}(B)) = \tilde{\nu}(B) \; \; \text{with} \; B = F^{-1}(A) \subset \mathbb{R}^2$
 $\Leftrightarrow \det(\nabla^2 \mathbf{u}(x)) g(\nabla \mathbf{u}(x)) = f(x) \text{ if } \mu(x) = f(x) dx \; \text{and} \; \tilde{\nu}(x) = g(x) dx$

Monge-Ampère equation in \mathbb{R}^2

Find $\mathbf{u}: \Omega \to \mathbb{R}^2$ such that $\det(\nabla^2 \mathbf{u}(x)) g(\nabla \mathbf{u}(x)) = f(x)$

with boundary conditions

$$
12 - 4
$$

 \rightsquigarrow Optimal transport problem in \mathbb{R}^2

Problem (FF): Find ψ_1,\ldots,ψ_N such that for every i , $\mu(V_i(\vec{\psi})) = \nu_i$.

-
-

 Case 1: mirror for point light source

 Case 2: mirror for collimated light source

 Optimal transport

 Semi-discrete optimal transport

 Damped Newton algorithm

 Non-imaging optics: Far-Field target

 Non-im
	-
	-
	-
	-
	-

e.g. $c(x, y) = ||x - y||^2$

Let $c: X \times Y \to \mathbb{R}$ be a cost function

e.g. $c(x, y) = ||x - y||^2$

Monge problem. Find a map $T: X \rightarrow Y$ such that

T preserves the mass, i.e. $\nu(A) = \mu(T^{-1}(A))$

 \blacktriangleright T minimizes the total cost

 $\min \int$ \boldsymbol{X} $c(x,T(x))d\mu(x)$

e.g. $c(x, y) = ||x - y||^2$

Kantorovitch relaxation – 1940's

Minimise $\int c(x, y)d\pi(x, y)$

where π is a transport plan, i.e

 π is a probability measure on $X \times Y$

$$
\pi(A \times Y) = \mu(A)
$$

15 - 4 ^{π} (X \times B) = ν (B)

Discrete source and target
linear programming

Discrete source and target
linear programming

Source and target with density (PDE):

Benamou-Brenier formulation

Discrete source and target
linear programming

Source with density, discrete target: Source and target with density (PDE):

Benamou-Brenier formulation

Stencil methods for Monge Ampère equations

Source with density, discrete target:

Coordinate-wise increment

Oliker-Prussner '89 Caffarelli-Kochengin-Oli

Oliker-Prussner '89 Caffarelli-Kochengin-Oliker '97
Kitagawa '12
Newton and quasi-Newton methods
Aurenhammer, Hoffmann, Aronov '98

-
-

 Case 1: mirror for point light source

 Case 2: mirror for collimated source light

 Optimal transport

 Semi-discrete optimal transport

 Damped Newton algorithm

 Non-imaging optics: Far-Field target

 Non-im
	-
	-
	-
	-
	-

 $\nu = \sum_i \nu_i \delta_{y_i}$ prob. measure on finite $Y = \{y_1, \cdots, y_N\}$ $c: X \times Y \to \mathbb{R}$ cost function

 $\nu = \sum_i \nu_i \delta_{y_i}$ prob. measure on finite $Y = \{y_1, \cdots, y_N\}$ $c: X \times Y \to \mathbb{R}$ cost function

Transport map: $T: X \to Y$ s.t. $\forall i, \ \mu(T^{-1}(\{y_i\})) = \nu_i$ (i.e. $T_{\#}\mu = \nu$)

 $\nu = \sum_i \nu_i \delta_{y_i}$ prob. measure on finite $Y = \{y_1, \cdots, y_N\}$ $c: X \times Y \to \mathbb{R}$ cost function

Transport map: $T: X \to Y$ s.t. $\forall i, \ \mu(T^{-1}(\{y_i\})) = \nu_i$ (i.e. $T_{\#}\mu = \nu$)

 $\sqrt{ }$ X $c(x,T(x)) d \mu(x)$

Semi-discrete optimal transp
 $\rho: X \to \mathbb{R}$ density of population
 $Y = \text{location of bakeries}$
 $c(x, y_i) := ||x - y_i||^2$
 X
 $Y = \text{location of bakeries}$ Semi-discrete optimal transport

-
-
- $) := ||x y_i||$

19 - 2 Semi-discrete OT and Laguerre diagrams ρ : X → R density of population Y = location of bakeries c(x, yi Semi-discrete optimal transport

-
-
- $) := \|x y_i\|^2$

$$
Vor(y_i) = \{x \in X; \forall j, \ c(x, y_i) \le c(x, y_j)\}
$$

19 - 3 Semi-discrete OT and Laguerre diagrams ρ : X → R density of population Y = location of bakeries c(x, yi Semi-discrete optimal transport

-
-
- $) := \|x y_i\|^2$

If prices are given by ψ_1, \cdots, ψ_N , people make a compromise:

Lag_i $(\psi) = \{x \in X; \forall j, c(x, y_i) + \psi_i \le c(x, y_j) + \psi_j\}$

Semi-discrete optimal transport

-
-
- $) := \|x y_i\|^2$

If prices are given by ψ_1, \cdots, ψ_N , people make a compromise:

Lag_i $(\psi) = \{x \in X; \forall j, c(x, y_i) + \psi_i \le c(x, y_j) + \psi_j\}$

19 - 4 Semi-discrete OT and Laguerre diagrams ρ : X → R density of population Y = location of bakeries c(x, yi ρ and ν_ψ where $\nu_{\psi,i} = \rho(\mathrm{Lag}_i(\psi))$ is the measure of $\mathrm{Lag}_i(\psi)$

Semi-discrete optimal transport

-
-
- $) := \|x y_i\|^2$

If prices are given by ψ_1, \cdots, ψ_N , people make a compromise:

Lag_i $(\psi) = \{x \in X; \forall j, c(x, y_i) + \psi_i \le c(x, y_j) + \psi_j\}$

19 - 5 Semi-discrete OT and Laguerre diagrams ρ : X → R density of population Y = location of bakeries c(x, yi ν_{ψ} where $\nu_{\psi,i} = \rho(\mathrm{Lag}_i(\psi))$ is the measure of $\mathrm{Lag}_i(\psi)$

 ρ and ν_ψ where $\nu_{\psi,i} = \rho(\mathrm{Lag}_i(\psi))$ is the measure of $\mathrm{Lag}_i(\psi)$
For other costs c , (Twist) : $\forall x$, the map $y \mapsto \nabla_x c(x,y)$ is injective

Semi-discrete optimal transport

-
-
- $) := \|x y_i\|^2$

If prices are given by ψ_1, \cdots, ψ_N , people make a compromise:

Lag_i $(\psi) = \{x \in X; \forall j, c(x, y_i) + \psi_i \le c(x, y_j) + \psi_j\}$

 S emi-discrete optimal transp
 $\rho: X \to \mathbb{R}$ density of population
 $Y =$ location of bakeries
 $c(x, y_i) := ||x - y_i||^2$

If prices are given by $ψ_1, \dots, ψ_N$, people n

Lag_i($ψ$) = { $x \in X; ∀j$, $c(x, y_i) + ψ_i$ s

Le ν_{ψ} where $\nu_{\psi,i} = \rho(\mathrm{Lag}_i(\psi))$ is the measure of $\mathrm{Lag}_i(\psi)$

For other costs c, (Twist): $\forall x$, the map $y \mapsto \nabla_x c(x, y)$ is injective

Solving OT between ρ and $\nu \Longleftrightarrow$ Finding ψ s.t. $\rho(\mathrm{Lag}_i(\psi)) = \nu_i \,\, \forall i$

Kantorovitch duality

20 - 1 20 - 1 $\sum_i \nu_i \delta_{y_i}$ \iff maximizing the concave function $\Phi: \mathbb{R}^N \to \mathbb{R}$ $\Phi(\psi) := \sum_i \int_{\mathrm{Lag}_i(\psi)} [c(x,y_i) + \psi_i] \, \mathrm{d}\, \rho(x) - \sum_i \psi_i \nu_i$
Aurenhammer, Hoffman, Aronov '98 i $\sqrt{ }$ $\int_{\mathrm{Lag}_i(\psi)} [c(x,y_i) + \psi_i] \, \mathrm{d}\, \rho(x) - \sum_i \psi_i \nu_i$

20 - 2
 20 - 2 $\sum_i \nu_i \delta_{y_i}$ \iff maximizing the concave function $\Phi: \mathbb{R}^N \to \mathbb{R}$ $\Phi(\psi) := \sum_i \int_{\mathrm{Lag}_i(\psi)} [c(x,y_i) + \psi_i] \, \mathrm{d}\, \rho(x) - \sum_i \psi_i \nu_i$
Aurenhammer, Hoffman, Aronov '98 i $\sqrt{ }$ $\int_{\mathrm{Lag}_i(\psi)} [c(x,y_i) + \psi_i] \, \mathrm{d}\, \rho(x) - \sum_i \psi_i \nu_i$ **Kantorovitch duality**

Theorem: Finding an optimal t
 \Leftrightarrow maximizing the c
 $\Phi(\psi) := \sum_i \int_{\text{Lag}_i(\psi)} [c(x, y_i)]$
 \blacktriangleright Recast of Kantorovich duality.

Kantorovitch duality

20 - 3
 20 - 3 Optimal transport ϕ and ν = \Rightarrow maximizing the **concave** function $\Phi : \mathbb{R}^N \to \mathbb{R}$
 $\Phi(\psi) := \sum_i \int_{\text{Lag}_i(\psi)} [c(x, y_i) + \psi_i] \, d\rho(x) - \sum_i \psi_i \nu_i$

Aurenhammer, Hoffm
 20 FRecast of Kantorovich dua $\sum_i \nu_i \delta_{y_i}$ \iff maximizing the concave function $\Phi: \mathbb{R}^N \to \mathbb{R}$ $\Phi(\psi) := \sum_i \int_{\mathrm{Lag}_i(\psi)} [c(x,y_i) + \psi_i] \, \mathrm{d}\, \rho(x) - \sum_i \psi_i \nu_i$
Aurenhammer, Hoffman, Aronov '98 i $\sqrt{ }$ $\int_{\mathrm{Lag}_i(\psi)} [c(x,y_i) + \psi_i] \, \mathrm{d}\, \rho(x) - \sum_i \psi_i \nu_i$

Recast of Kantorovich duality.

$$
\nabla \Phi(\psi) = (\rho(\text{Lag}_i(\psi)) - \nu_i)_{1 \leq i \leq N}.
$$
 Hence,

$$
\nabla \Phi = 0 \iff \forall i, \ \rho(\text{Lag}_i(\psi)) = \nu_i.
$$
 (discrete Monge-Ampère equation)

20 - 4
 20 - 4 Optimal transport $\begin{aligned} \mathbf{H} &= \mathbf{H} \mathbf{H}$ $\sum_i \nu_i \delta_{y_i}$ \iff maximizing the concave function $\Phi: \mathbb{R}^N \to \mathbb{R}$ $\Phi(\psi) := \sum_i \int_{\mathrm{Lag}_i(\psi)} [c(x,y_i) + \psi_i] \, \mathrm{d}\, \rho(x) - \sum_i \psi_i \nu_i$
Aurenhammer, Hoffman, Aronov '98 i $\sqrt{ }$ $\int_{\mathrm{Lag}_i(\psi)} [c(x,y_i) + \psi_i] \, \mathrm{d}\, \rho(x) - \sum_i \psi_i \nu_i$ **Kantorovitch duality**
 Theorem: Finding an **optimal transport** between ρ and $\nu =$
 \Leftrightarrow maximizing the **concave** function $\Phi : \mathbb{R}^N \rightarrow$
 $\Phi(\psi) := \sum_i \int_{\text{Lag}_i(\psi)} [c(x, y_i) + \psi_i] d\rho(x) - \sum_i \psi_i \nu_i$

Aurenhammer, Hoffi

Recast of Kantorovich duality.

$$
\nabla \Phi(\psi) = (\rho(\text{Lag}_i(\psi)) - \nu_i)_{1 \leq i \leq N}. \text{ Hence,}
$$

$$
\nabla \Phi = 0 \iff \forall i, \ \rho(\text{Lag}_i(\psi)) = \nu_i. \qquad \text{(discrete Monge-Ampère equation)}
$$

Existing numerical methods: coordinate-wise increment with minimum step, with complexity $O(\frac{N^3}{\varepsilon})$ [Oliker–Prussner '99] ε
20 Concave Existing an optimal transport between *ρ* and $\nu =$
 \Leftrightarrow maximizing the **concave** function $\Phi : \mathbb{R}^N \to \mathbb{R}$
 $\Phi(\psi) := \sum_i \int_{\text{Lag}_i(\psi)} [c(x, y_i) + \psi_i] d\rho(x) - \sum_i \psi_i \nu_i$

Aurenhammer, Hoffm
 > Recast of Ka $\sum_i \nu_i \delta_{y_i}$ \iff maximizing the concave function $\Phi: \mathbb{R}^N \to \mathbb{R}$ $\Phi(\psi) := \sum_i \int_{\mathrm{Lag}_i(\psi)} [c(x,y_i) + \psi_i] \, \mathrm{d}\, \rho(x) - \sum_i \psi_i \nu_i$
Aurenhammer, Hoffman, Aronov '98 i $\sqrt{ }$ $\int_{\mathrm{Lag}_i(\psi)} [c(x,y_i) + \psi_i] \, \mathrm{d}\, \rho(x) - \sum_i \psi_i \nu_i$ **Kantorovitch duality**
 Theorem: Finding an **optimal transport** between ρ and $\nu =$
 \Leftrightarrow maximizing the **concave** function $\Phi : \mathbb{R}^N \rightarrow$
 $\Phi(\psi) := \sum_i \int_{\text{Lag}_i(\psi)} [c(x, y_i) + \psi_i] d\rho(x) - \sum_i \psi_i \nu_i$

Aurenhammer, Hoffi

 \blacktriangleright Recast of Kantorovich duality.

$$
\nabla \Phi(\psi) = (\rho(\text{Lag}_i(\psi)) - \nu_i)_{1 \leq i \leq N}. \text{ Hence,}
$$

$$
\nabla \Phi = 0 \iff \forall i, \ \rho(\text{Lag}_i(\psi)) = \nu_i. \qquad \text{(discrete Monge-Ampère equation)}
$$

- Existing numerical methods: coordinate-wise increment with minimum step, with complexity $\mathrm{O}(\frac{N^3}{\varepsilon}\log(N)), \, \varepsilon =$ precision. In latter-Prussner '99] 3 ε
- 1 Quasi Newton methods for $c(x, y) = ||x y||^2$ on $\mathbb{R}^2 / \mathbb{R}^3$ S² No analysis

[Mérigot, '11] [Lévy '14] [de Goes et al '12] [Machado, Mérigot, Thibert '16]

1 Newton method in \mathbb{R}^2 , \mathbb{R}^3 , when μ sup [Mérigot. '11] [Lévy '14] [de Goes et al '12] [Machado, Mérigot, Thibert '16]
- \blacktriangleright Newton method in \mathbb{R}^2 , \mathbb{R}^3

-
- Outline

► Case 1: mirror for point light source

► Case 2: mirror for collimated source light

► Optimal transport

► Semi-discrete optimal transport

► Non-imaging optics: Far-Field target

► Non-imaging optics: Near-Fi
	-
	-
	-
	-
	-

Newton's Algorithm

Equation $\rho(\text{Lag}_i(\psi)) = \nu_i$ for a

22 - 1 Newton Algorithm

Equation $\rho(\text{Lag}_i(\psi)) = \nu_i$ for all i

Newton Algorithm
 Equation $\rho(\text{Lag}_i(\psi)) = \nu_i$ for a

We define $G : \mathbb{R}^N \to \mathbb{R}^N$ by C
 Equation

Remark: G is invariant by addit

22 - 2 Newton Algorithm

Equation $\rho(\text{Lag}_i(\psi)) = \nu_i$ for all i

We define $G: \mathbb{R}^N \to \mathbb{R}^N$ by $G(\psi) = (\rho(\mathrm{Lag}_i(\psi)))_{1 \leq i \leq N}$

Equation $G(\psi) = \nu$

Remark: G is invariant by addition of a vector $\lambda(1,\cdots,1)$.

$$
\sum_{N} \left(\frac{1}{N} \right)^{N} \left(\frac{1}{N} \right)^{N}
$$

Newton Algorithm

Equation $\rho(\text{Lag}_i(\psi)) = \nu_i$ for all i

We define $G: \mathbb{R}^N \to \mathbb{R}^N$ by $G(\psi) = (\rho(\mathrm{Lag}_i(\psi)))_{1 \leq i \leq N}$

Equation $G(\psi) = \nu$

 $X \leftarrow Y$

Remark: G is invariant by addition of a vector $\lambda(1,\cdots,1)$.

Newton Algorithm

Equation $\rho(\text{Lag}_i(\psi)) = \nu_i$ for a

We define $G : \mathbb{R}^N \to \mathbb{R}^N$ by C
 Equation

Remark: G is invariant by addit
 Newton algorithm: for solving G

Input: $\psi^0 \in \mathbb{R}^N$ s.t. $\varepsilon := \frac{1}{2} \min_i \math$ k s.t. $\mathrm{D}G(\psi^k)d^k=G(\psi^k)-\nu$ and $\sum_i d_i^k$ Newton algorithm: for solving $G(\psi) = \nu$
Input: $\psi^0 \in \mathbb{R}^N$ s.t. $\varepsilon := \frac{1}{2} \min_i \min(G(\psi^0)_i, \nu_i) > 0$
Loop: \longrightarrow Calculate d^k s.t. $\mathrm{DG}(\psi^k)d^k = G(\psi^k) - \nu$ and $\widehat{\sum_i d_i^k} = 0$ Input: $\psi^0 \in \mathbb{R}^N$ s.t. $\varepsilon := \frac{1}{2} \min_i \min(G(\psi^0)_i, \nu_i) > 0$ $\longrightarrow \psi^{k+1} := \psi^k - d^k$

Newton Algorithm

Equation $\rho(\text{Lag}_i(\psi)) = \nu_i$ for all i

We define $G: \mathbb{R}^N \to \mathbb{R}^N$ by $G(\psi) = (\rho(\mathrm{Lag}_i(\psi)))_{1 \leq i \leq N}$

Equation $G(\psi) = \nu$

Remark: G is invariant by addition of a vector $\lambda(1,\cdots,1)$.

Newton Algorithm

Equation $\rho(\text{Lag}_i(\psi)) = \nu_i$ for a

We define $G : \mathbb{R}^N \to \mathbb{R}^N$ by C
 Equation

Remark: G is invariant by addit
 Newton algorithm: for solving G
 Input: $\psi^0 \in \mathbb{R}^N$ s.t. $\varepsilon := \frac{1}{2} \min_i$ k s.t. $\mathrm{D}G(\psi^k)d^k=G(\psi^k)-\nu$ and $\sum_i d_i^k$ Newton algorithm: for solving $G(\psi) = \nu$
Input: $\psi^0 \in \mathbb{R}^N$ s.t. $\varepsilon := \frac{1}{2} \min_i \min(G(\psi^0)_i, \nu_i) > 0$
Loop: \longrightarrow Calculate d^k s.t. $\mathrm{DG}(\psi^k)d^k = G(\psi^k) - \nu$ and $\widehat{\sum_i d_i^k} = 0$ Input: $\psi^0 \in \mathbb{R}^N$ s.t. $\varepsilon := \frac{1}{2} \min_i \min(G(\psi^0)_i, \nu_i) > 0$ $\longrightarrow \psi^{k+1} := \psi^k - d^k$ $\sum_{1 \leq i \leq N}$
 $\sum_{i=1}^{N}$
 $\sum_{i=1}$

Local convergence : if ψ^0 is close to a solution ψ^*

Newton Algorithm

Equation $\rho(\text{Lag}_i(\psi)) = \nu_i$ for all i

We define $G: \mathbb{R}^N \to \mathbb{R}^N$ by $G(\psi) = (\rho(\mathrm{Lag}_i(\psi)))_{1 \leq i \leq N}$

Equation $G(\psi) = \nu$

Remark: G is invariant by addition of a vector $\lambda(1,\cdots,1)$.

Newton Algorithm

Equation ρ (Lag_i(ψ)) = ν_i for a

We define $G : \mathbb{R}^N \to \mathbb{R}^N$ by C

Equation

Remark: G is invariant by addit

Newton algorithm: for solving G

Input: $\psi^0 \in \mathbb{R}^N$ s.t. $\varepsilon := \frac{1}{2$ k s.t. $\mathrm{D}G(\psi^k)d^k=G(\psi^k)-\nu$ and $\sum_i d_i^k$ Newton algorithm: for solving $G(\psi) = \nu$
Input: $\psi^0 \in \mathbb{R}^N$ s.t. $\varepsilon := \frac{1}{2} \min_i \min(G(\psi^0)_i, \nu_i) > 0$
Loop: \longrightarrow Calculate d^k s.t. $\mathrm{DG}(\psi^k)d^k = G(\psi^k) - \nu$ and $\widehat{\sum_i d_i^k} = 0$ Input: $\psi^0 \in \mathbb{R}^N$ s.t. $\varepsilon := \frac{1}{2} \min_i \min(G(\psi^0)_i, \nu_i) > 0$ $\longrightarrow \psi^{k+1} := \psi^k - d^k$ $\sum_{1 \leq i \leq N}$
 $\sum_{i=1}^{N}$
 $\sum_{i=1}$

Local convergence : if ψ^0 is close to a solution ψ^* How about global convergence ?

Remark: If $\text{Lag}_i(\psi) = \emptyset$ then $DG_i(\psi) = 0$ locally and d^k not unique. We want to enforce $\text{Lag}_i(\psi^k) \neq \emptyset.$

Damped Newton A
 Equation $G(\psi) = \nu$ where $G(\psi)$
 Admissible domain: $E_{\varepsilon} := {\psi \in \mathbb{R}^n}$

23 - 1 Admissible domain: $E_\varepsilon:=\{\psi\in\mathbb{R}^N;\forall i,\rho(\mathrm{Lag}_i(\psi)\geq\varepsilon\}$ where $G(\psi)=(\rho(\mathrm{Lag}_i(\psi)))_{1\leq i\leq N}$

 $\rho(\mathrm{Lag}_i(\psi)) \geq \varepsilon$

Equation $G(\psi) = \nu$ where $G(\psi) = (\rho(\text{Lag}_i(\psi)))_{1 \leq i \leq N}$ Admissible domain: $E_\varepsilon:=\{\psi\in\mathbb{R}^N;\forall i,\rho(\mathrm{Lag}_i(\psi)\geq\varepsilon\}$

Damped Newton A
 Equation $G(\psi) = \nu$ where $G(\psi)$
 Admissible domain: $E_{\varepsilon} := \{\psi \in \mathcal{E}\}$
 Damped Newton algorithm: for
 Input: $\psi^0 \in \mathbb{R}^N$ s.t. $\varepsilon := \frac{1}{2} \min_i$:
 Loop: → Calculate d^k s.t. $DG(\psi^k)$ k s.t. $\mathrm{D}G(\psi^k)d^k=G(\psi^k)-\nu$ and $\sum_i d_i^k$ **Damped Newton algorithm:** for solving $G(\psi) = \nu$
 Input: $\psi^0 \in \mathbb{R}^N$ s.t. $\varepsilon := \frac{1}{2} \min_i \min(G(\psi^0)_i, \nu_i) > 0$
 Loop: \rightarrow Calculate d^k s.t. $\mathrm{DG}(\psi^k)d^k = G(\psi^k) - \nu$ and $\sum_i d_i^k = 0$ $\lambda \to \tau^k = \max\{\tau \in 2^{-\mathbb{N}} \ | \ \textcolor{black}{\big(\psi^{k\tau} \in E_\theta \text{ and } \textcolor{black}{\|G(\psi^{k\tau})-\nu\|} \leq (1-\frac{\tau}{2})}\}$ $\frac{\tau}{2})\|G(\psi^k$ **Input:** $\psi^0 \in \mathbb{R}^N$ s.t. $\varepsilon := \frac{1}{2} \min_i \min(G(\psi^0)_i, \nu_i) > 0$
 Loop: \rightarrow Calculate d^k s.t. $DG(\psi^k)d^k = G(\psi^k) - \nu$ and $\sum_i d_i^k = 0$
 \rightarrow Define $\psi^{k,\tau} = \psi^k - \tau d^k$
 $\rightarrow \tau^k = \max\{\tau \in 2^{-\mathbb{N}} \mid \text{diag}^{k\tau} \in E_{\theta} \text{ and }$ $0 \in \mathbb{R}^N$ s.t. $\varepsilon := \frac{1}{2} \min_i \min(G(\psi^0)_i, \nu_i) > 0$ $\rightarrow \psi_{k+1} := \psi_k - \tau^k d^k$ \to Define $\psi^{k, \tau} = \psi^k - \tau d^k$

 $\rho(\mathrm{Lag}_i(\psi)) \geq \varepsilon$

Equation $G(\psi) = \nu$ where $G(\psi) = (\rho(\text{Lag}_i(\psi)))_{1 \leq i \leq N}$ Admissible domain: $E_\varepsilon:=\{\psi\in\mathbb{R}^N;\forall i,\rho(\mathrm{Lag}_i(\psi)\geq\varepsilon\}$

Damped Newton A
 Equation $G(\psi) = \nu$ where $G(\psi) = \nu$ where $G(\psi) = \nu$
 Damped Newton algorithm: for
 Input: $\psi^0 \in \mathbb{R}^N$ s.t. $\varepsilon := \frac{1}{2} \min_i$:
 Loop: → Calculate d^k s.t. $DG(\psi^k)$

→ Define $\psi^{k,\tau} = \psi^k - \$ k s.t. $\mathrm{D}G(\psi^k)d^k=G(\psi^k)-\nu$ and $\sum_i d_i^k$ **Damped Newton algorithm:** for solving $G(\psi) = \nu$
 Input: $\psi^0 \in \mathbb{R}^N$ s.t. $\varepsilon := \frac{1}{2} \min_i \min(G(\psi^0)_i, \nu_i) > 0$
 Loop: \rightarrow Calculate d^k s.t. $\mathrm{DG}(\psi^k)d^k = G(\psi^k) - \nu$ and $\sum_i d_i^k = 0$ $\lambda \to \tau^k = \max\{\tau \in 2^{-\mathbb{N}} \ | \ \textcolor{black}{\big(\psi^{k\tau} \in E_\theta \text{ and } \textcolor{black}{\|G(\psi^{k\tau})-\nu\|} \leq (1-\frac{\tau}{2})}\}$ $\frac{\tau}{2})\|G(\psi^k$ **Input:** $\psi^0 \in \mathbb{R}^N$ s.t. $\varepsilon := \frac{1}{2} \min_i \min(G(\psi^0)_i, \nu_i) > 0$
 Loop: \rightarrow Calculate d^k s.t. $DG(\psi^k)d^k = G(\psi^k) - \nu$ and $\sum_i d_i^k = 0$
 \rightarrow Define $\psi^{k,\tau} = \psi^k - \tau d^k$
 $\rightarrow \tau^k = \max\{\tau \in 2^{-\mathbb{N}} \mid \text{diag}^{k\tau} \in E_{\theta} \text{ and }$ $0 \in \mathbb{R}^N$ s.t. $\varepsilon := \frac{1}{2} \min_i \min(G(\psi^0)_i, \nu_i) > 0$ $\rightarrow \psi_{k+1} := \psi_k - \tau^k d^k$ \to Define $\psi^{k, \tau} = \psi^k - \tau d^k$

 $\rho(\mathrm{Lag}_i(\psi)) \geq \varepsilon$

Remark: The damped Newton's algorithm converges globally provided that: $\mathcal{E}(\mathsf{Smoothness})\colon\, G$ is \mathcal{C}^1 on E_ε .

Equation $G(\psi) = \nu$ where $G(\psi) = (\rho(\text{Lag}_i(\psi)))_{1 \leq i \leq N}$ Admissible domain: $E_\varepsilon:=\{\psi\in\mathbb{R}^N;\forall i,\rho(\mathrm{Lag}_i(\psi)\geq\varepsilon\}$

Damped Newton A
 Equation $G(\psi) = \nu$ where $G(\psi) = \nu$ where $G(\psi) = \nu$
 Admissible domain: $E_{\varepsilon} := {\psi \in \mathbb{R}^N \text{ s.t. } \varepsilon := \frac{1}{2} \min_i \varepsilon : \text{Loop: → Calculate } d^k \text{ s.t. } DG(\psi^k \rightarrow \text{Define } \psi^{k,\tau} = \psi^k - \tau d^k$

→ Define $\psi^{k,\tau} = \psi^k - \tau d^$ k s.t. $\mathrm{D}G(\psi^k)d^k=G(\psi^k)-\nu$ and $\sum_i d_i^k$ **Damped Newton algorithm:** for solving $G(\psi) = \nu$
 Input: $\psi^0 \in \mathbb{R}^N$ s.t. $\varepsilon := \frac{1}{2} \min_i \min(G(\psi^0)_i, \nu_i) > 0$
 Loop: \rightarrow Calculate d^k s.t. $\mathrm{DG}(\psi^k)d^k = G(\psi^k) - \nu$ and $\sum_i d_i^k = 0$ $\frac{\tau}{2})\|G(\psi^k$ **Input:** $\psi^0 \in \mathbb{R}^N$ s.t. $\varepsilon := \frac{1}{2} \min_i \min(G(\psi^0)_i, \nu_i) > 0$
 Loop: \rightarrow Calculate d^k s.t. $DG(\psi^k)d^k = G(\psi^k) - \nu$ and $\sum_i d_i^k = 0$
 \rightarrow Define $\psi^{k,\tau} = \psi^k - \tau d^k$
 $\rightarrow \tau^k = \max\{\tau \in 2^{-\mathbb{N}} \mid \text{diag}^{k\tau} \in E_{\theta} \text{ and }$ $0 \in \mathbb{R}^N$ s.t. $\varepsilon := \frac{1}{2} \min_i \min(G(\psi^0)_i, \nu_i) > 0$ $\rho(\mathrm{Lag}_i(\psi)) \geq \varepsilon$ $\rightarrow \psi_{k+1} := \psi_k - \tau^k d^k$ \to Define $\psi^{k, \tau} = \psi^k - \tau d^k$

Remark: The damped Newton's algorithm converges globally provided that: (Strict monotonicity): $\forall \psi \in E_\varepsilon$, $\, DG(\psi)$ is neg. definite on $E_\varepsilon \cap \{cst\}^\perp$ $\mathcal{E}(\mathsf{Smoothness})\colon\, G$ is \mathcal{C}^1 on E_ε . $\begin{aligned}\n\to \tau^k &= \max \{ \tau \in 2^{-\mathbb{N}} \mid \underbrace{\psi^{k\tau} \in E_{\theta}} \text{ and } \underbrace{\|\widehat{G}(\psi^{k\tau}) - \nu\| \leq (1 - \frac{\tau}{2}) \| G(\psi^k) - \nu \|}_{\mathsf{N} + 1} \\
&\text{for } k \in \mathbb{N}.\n\end{aligned}$
 $\begin{aligned}\n\text{where } \mathbf{M} \text{ is } \mathcal{C}^1 \text{ is } \mathcal{C}^1 \text{ is } \mathcal{C}^1 \text{ is } \mathcal{C}^1 \text{ is } \mathcal{C}^$

Equation $G(\psi) = \nu$ where $G(\psi) = (\rho(\text{Lag}_i(\psi)))_{1 \leq i \leq N}$ Admissible domain: $E_\varepsilon:=\{\psi\in\mathbb{R}^N;\forall i,\rho(\mathrm{Lag}_i(\psi)\geq\varepsilon\}$

Damped Newton A
 Equation $G(\psi) = \nu$ where $G(\psi) = \nu$ where $G(\psi) = \nu$
 Damped Newton algorithm: for
 Input: $\psi^0 \in \mathbb{R}^N$ s.t. $\varepsilon := \frac{1}{2} \min_i$:
 Loop: → Calculate d^k s.t. $DG(\psi^k)$

→ Define $\psi^{k,\tau} = \psi^k - \$ k s.t. $\mathrm{D}G(\psi^k)d^k=G(\psi^k)-\nu$ and $\sum_i d_i^k$ **Damped Newton algorithm:** for solving $G(\psi) = \nu$
 Input: $\psi^0 \in \mathbb{R}^N$ s.t. $\varepsilon := \frac{1}{2} \min_i \min(G(\psi^0)_i, \nu_i) > 0$
 Loop: \rightarrow Calculate d^k s.t. $\mathrm{DG}(\psi^k)d^k = G(\psi^k) - \nu$ and $\sum_i d_i^k = 0$ $\frac{\tau}{2})\|G(\psi^k$ **Input:** $\psi^0 \in \mathbb{R}^N$ s.t. $\varepsilon := \frac{1}{2} \min_i \min(G(\psi^0)_i, \nu_i) > 0$
 Loop: \rightarrow Calculate d^k s.t. $DG(\psi^k)d^k = G(\psi^k) - \nu$ and $\sum_i d_i^k = 0$
 \rightarrow Define $\psi^{k,\tau} = \psi^k - \tau d^k$
 $\rightarrow \tau^k = \max\{\tau \in 2^{-\mathbb{N}} \mid \text{diag}^{k\tau} \in E_{\theta} \text{ and }$ $0 \in \mathbb{R}^N$ s.t. $\varepsilon := \frac{1}{2} \min_i \min(G(\psi^0)_i, \nu_i) > 0$ $\rightarrow \psi_{k+1} := \psi_k - \tau^k d^k$ $G(\psi) = \nu$ where $G(\psi) = (\rho(\text{Lag}_i(\psi)))_{1 \leq i \leq N}$
 $\text{e domain: } E_{\varepsilon} := \{\psi \in \mathbb{R}^N; \forall i, \rho(\text{Lag}_i(\psi) \geq \varepsilon\})$
 $\rho(\text{Lag}_i(\psi)) \geq \varepsilon$

Newton algorithm: for solving $G(\psi) = \nu$
 $\in \mathbb{R}^N$ s.t. $\varepsilon := \frac{1}{2} \min_i \min(G(\psi^0)_i, \nu_i) > 0$ \to Define $\psi^{k, \tau} = \psi^k - \tau d^k$

 $\rho(\mathrm{Lag}_i(\psi)) \geq \varepsilon$

Remark: The damped Newton's algorithm converges globally provided that: (Strict monotonicity): $\forall \psi \in E_\varepsilon$, $\, DG(\psi)$ is neg. definite on $E_\varepsilon \cap \{cst\}^\perp$ $\mathcal{E}(\mathsf{Smoothness})\colon\, G$ is \mathcal{C}^1 on E_ε . $\begin{aligned}\n\to \tau^k &= \max \{ \tau \in 2^{-\mathbb{N}} \mid \underbrace{\psi^{k\tau} \in E_{\theta}} \text{ and } \underbrace{\|\widehat{G}(\psi^{k\tau}) - \nu\| \leq (1 - \frac{\tau}{2}) \| G(\psi^k) - \nu \|}_{\mathsf{N} + 1} \\
&\text{for } k \in \mathbb{N}.\n\end{aligned}$
 $\begin{aligned}\n\text{where } \mathbf{M} \text{ is } \mathcal{C}^1 \text{ is } \mathcal{C}^1 \text{ is } \mathcal{C}^1 \text{ is } \mathcal{C}^1 \text{ is } \mathcal{C}^$

Quadratic cost : smoothness of G

we have $G_i(\psi)=\rho(\mathrm{Lag}_i(\psi))\quad c(x,y):=\|x-y\|^2$

 $\frac{0}{c}(\mathbb{R}^d)$ one has

Quadratic cost: **smoothness of** *G*
\nwe have
$$
G_i(\psi) = \rho(\text{Lag}_i(\psi)) - c(x, y) := ||x - y||^2
$$

\n**Proposition:** For $\psi \in E_{\varepsilon}$, and assuming that $\rho \in C_c^0(\mathbb{R}^d)$ one has
\n(A) $\frac{\partial G_i}{\partial \psi_j}(\psi) = \frac{1}{2||y_i - y_j||} \int_{\text{Lag}_{ij}(\psi)} \rho(x) dx(\beta) - \frac{\partial G_i}{\partial \psi_i}(\psi) = -\sum_{j \neq i} \frac{\partial G_i}{\partial \psi_j}(\psi)$
\n $j \neq i$
\n $\text{Lag}_{ij}(\psi) := \text{Lag}_i(\psi) \cap \text{Lag}_j(\psi)$
\n24 - 1

Quadratic cost : smoothness of G

we have $G_i(\psi)=\rho(\mathrm{Lag}_i(\psi))\quad c(x,y):=\|x-y\|^2$

 $\frac{0}{c}(\mathbb{R}^d)$ one has

(A)
$$
\frac{\partial G_i}{\partial \psi_j}(\psi) = \frac{1}{2\|y_i - y_j\|} \frac{\int \partial G_{ij}(\psi)}{\partial \psi_j} \rho(x) dx(\beta) \frac{\partial G_i}{\partial \psi_i}(\psi) = -\sum_{j \neq i} \frac{\partial G_i}{\partial \psi_j}(\psi)
$$

$$
Lag_{ij}(\psi) := Lag_i(\psi) \cap \text{Lag}_j(\psi)
$$

Intuition of the proof:

 $\frac{0}{c}(\mathbb{R}^d)$ one has $(A) \frac{\partial G_i}{\partial y_i}$ $\partial \psi_j$ $(\psi) = \frac{1}{2\|u\|}$ $2\|y_i-y_j\|$ $\overline{\mathcal{A}}$ $\mathrm{Lag}_{ij}(\psi)$ $\rho(x) d x(\mathsf{B}) \quad \frac{\partial G_i}{\partial y_i}$ $\partial\psi_i$ $(\psi) = -\sum_{j \neq i}$ ∂G_i $\partial \overline{\psi}_j$ (ψ) $i \neq i$ **Quadratic cost : smoothness of G**

we have $G_i(\psi) = \rho(\text{Lag}_i(\psi))$ $c(x, y) := ||x - y||^2$
 Proposition: For $\psi \in E_{\varepsilon}$, and assuming that $\rho \in C_c^0(\mathbb{R}^d)$ one has

(A) $\frac{\partial G_i}{\partial \psi_j}(\psi) = \frac{1}{2||y_i - y_j||} \frac{\int_{\text{Lag}_{ij}(\psi)} \rho(x) dx(\$

 $\frac{0}{c}(\mathbb{R}^d)$ one has

 $\frac{0}{c}(\mathbb{R}^d)$ one has

Quadratic cost : smoothness of *G*

we have $G_i(\psi) = \rho(\text{Log}_i(\psi)) - c(x, y) := ||x - y||^2$
 Proposition: For $\psi \in E_{\varepsilon}$, and assuming that $\rho \in C_c^0(\mathbb{R}^d)$ one has

(A) $\frac{\partial G_i}{\partial \psi_i}(\psi) = \frac{1}{2\frac{1}{||y_i - y_i||}\int_{\text{Log}_i j} (\psi)} \rho(x)$ **Proposition:** For $\psi \in E_{\varepsilon}$, and assuming that $\rho \in C_{c}^{0}$

(A) $\frac{\partial G_{i}}{\partial \psi_{j}}(\psi) = \frac{1}{2||y_{i}-y_{j}||} \frac{\int_{\text{Lag}_{i,j}(\psi)} \rho(x) dx(\text{B}) - \frac{\partial G_{i}}{\partial \psi_{j}}}{\int \text{Lag}_{i,j}(\psi) := \text{Lag}}$

Lag_{ij} $(\psi) := \text{Lag}$

Continuity of $\frac{\partial G_{i}}{\$ $\frac{0}{c}(\mathbb{R}^d)$ one has $(A) \frac{\partial G_i}{\partial y_i}$ $\partial \psi_j$ $(\psi) = \frac{1}{2\|u\|}$ $2\|y_i-y_j\|$ $\overline{\mathcal{A}}$ $\mathrm{Lag}_{ij}(\psi)$ $\rho(x) d x(\mathsf{B}) \quad \frac{\partial G_i}{\partial y_i}$ $\mathrm{Lag}_i(\psi) := \mathrm{Lag}_i(\psi) \cap \mathrm{Lag}_j(\psi)$ $\partial\psi_i$ $(\psi) = -\sum_{j \neq i}$ ∂G_i $\partial \overline{\psi}_j$ (ψ) $i \neq i$ When t varies, $\frac{\partial G_i}{\partial y_i}$ $\frac{\partial G_i}{\partial \psi_j}(\psi_t)$ **Quadratic cost : smoothness of G**

we have $G_i(\psi) = \rho(\text{Lag}_i(\psi))$ $c(x, y) := ||x - y||^2$
 Proposition: For $\psi \in E_{\varepsilon}$, and assuming that $\rho \in C_c^0(\mathbb{R}^d)$ one has

(A) $\frac{\partial G_i}{\partial \psi_j}(\psi) = \frac{1}{2||y_i - y_j||} \frac{\int_{\text{Lag}_{ij}(\psi)} \rho(x) dx(\$ $\begin{align*}\n\text{Continuity of } & \frac{\partial G_i}{\partial \psi_j}(\psi) \\
\text{When } t \text{ varies, } & \frac{\partial G_i}{\partial \psi_j}(\psi_t) \text{ increases ...} \\
\text{and then suddenly vanishes.} \\
-\rho(\text{Lag}_i(\psi)) > 0 \text{ at all times}\n\end{align*}$ $-\rho(\text{Lag}_i(\psi)) > 0 \text{ at all times}\n\end{align*}$ $\partial \psi_j$ (ψ)

Quadratic cost: strict monotonicity of G

Quadratic cost: strict monotonicity of G

Quadratic cost: strict monotonicity of G
we have $G_i(\psi) = \rho(\text{Lag}_i(\psi))$
Recall: $\frac{\partial G_i}{\partial \psi_j}(\psi) = \underbrace{\int_{\text{Lag}_{ij}(\psi)} \frac{\rho(x) dx}{ y _{y-yj} }}_{\text{Lag}_{ij}(\psi)} = \underbrace{\frac{\partial G_i}{\partial \psi_i}(\psi)}_{\text{Lag}_{ij}(\psi)} = \text{Lag}_i(\psi) \cap \text{Lag}_j(\psi)$
Consider the matrix $(L_{ij}) := \frac{\partial G_i}{\partial \psi_j}(\psi)$ and the graph H :
$(y_i, y_j) \in H \iff L_{ij} > 0 \iff \text{Lag}_{ij}(\psi) \cap \{ \rho > 0 \} \neq \emptyset$.
25 - 2

$$
25 - 2
$$

Quadratic cost: strict monotonicity of G
we have $G_i(\psi) = \rho(\text{Lag}_i(\psi))$
Recall: $\frac{\partial G_i}{\partial \psi_j}(\psi) = \underbrace{\int_{\text{Lag}_{ij}(\psi)} \frac{\rho(x) dx}{2 y_i - y_j }}_{Lag_{ij}(\psi)} = \underbrace{\int_{\text{Lag}_i(\psi)} \frac{\partial G_i}{\partial \psi_i}(\psi)}_{Lag_{ij}(\psi)} = \text{Lag}_i(\psi) \cap \text{Lag}_j(\psi)$
Consider the matrix $(L_{ij}) := \frac{\partial G_i}{\partial \psi_j}(\psi)$ and the graph H :
$(y_i, y_j) \in H \iff L_{ij} > 0 \iff \text{Lag}_{ij}(\psi) \cap \{\rho > 0\} \neq \emptyset$.
If $\{\rho > 0\}$ is connected and $\psi \in E_{\varepsilon}$, then H is connected.
25 - 3

Quadratic cost: strict monotonicity of G

Quadratic cost: strict monotonicity of G
we have $G_i(\psi) = \rho(\text{Lag}_i(\psi))$
Recall: $\frac{\partial G_i}{\partial \psi_j}(\psi) = \underbrace{\int_{\text{Lag}_{ij}(\psi)} \frac{\rho(x) dx}{ 2 y_i - y_j }}_{Lag_{ij}(\psi)} = \underbrace{\int_{\text{Lag}_i(\psi)} \frac{\partial G_i}{\partial \psi_i}(\psi)}_{Lag_{ij}(\psi)} = \text{Lag}_i(\psi) \cap \text{Lag}_j(\psi)$
Consider the matrix $(L_{ij}) := \frac{\partial G_i}{\partial \psi_j}(\psi)$ and the graph H :
$(y_i, y_j) \in H \iff L_{ij} > 0 \iff \text{Lag}_{ij}(\psi) \cap \{\rho > 0\} \neq \emptyset$.
If $\{\rho > 0\}$ is connected and $\psi \in E_{\varepsilon}$, then H is connected.
$\text{Ker}(L) = \{cst\} = \mathbb{R} \begin{pmatrix} \\ \\ \end{pmatrix}$

Quadratic cost: strict monotonicity of G

we have $G_i(\psi)=\rho(\mathrm{Lag}_i(\psi))$

Quadratic cost: strict monotonicity of G
we have $G_i(\psi) = \rho(\text{Lag}_i(\psi))$
Recall: $\frac{\partial G_i}{\partial \psi_j}(\psi) = \underbrace{\int_{\text{Lag}_{ij}(\psi)} \frac{\rho(x) dx}{ 2 y_i - y_j }}_{Lag_{ij}(\psi)} = \underbrace{\int_{\text{Lag}_i(\psi)} \frac{\partial G_i}{\partial \psi_i}(\psi)}_{Lag_{ij}(\psi)} = \underbrace{\int_{\text{Lag}_i(\psi)} \text{Lag}_i(\psi)}_{Lag_{ij}(\psi)}$
Consider the matrix $(L_{ij}) := \frac{\partial G_i}{\partial \psi_j}(\psi)$ and the graph H :
Consider the matrix $(L_{ij}) := \frac{\partial G_i}{\partial \psi_j}(\psi)$ and the graph H :
Consider the matrix $(L_{ij}) := \frac{\partial G_i}{\partial \psi_j}(\psi)$ and the graph H :
Consider the matrix $(L_{ij}) := \frac{\partial G_i}{\partial \psi_j}(\psi)$ and the graph H :
Consider the matrix $(L_{ij}) := \frac{\partial G_i}{\partial \psi_j}(\psi)$ and the graph H :
Consider the matrix $(L_{ij}) := \frac{\partial G_i}{\partial \psi_j}(\psi)$ and the graph H :
Consider the matrix $(L_{ij}) := \frac{\partial G_i}{\partial \psi_j}(\psi)$ and the graph H :
Consider the matrix $(L_{ij}) := \frac{\partial G_i}{\partial \psi_j}(\psi)$ and the graph H :
Suppose $(y_i, y_j) \in H \iff L_{ij} > 0$ and $\psi \in E_{\varepsilon}$, then H is connected.
For $(L) = \{cst\} = \mathbb{R}\left(\begin{array}{c} \\ \\ \end{array}\right)$
Proposition: Assume $\rho \in C_c$

 $\forall \psi \in E_\varepsilon, \ \ \forall v \in \{cst\}^\perp \ \ \langle DG(\psi)v|v \rangle < 0$

 \rightsquigarrow we require connectedness conditions on ρ

Convergence in the quadratic case

Theorem: Let *X* be a (closed) convex bounded domain of R
 $Y \subset \mathbb{R}^d$ be a finite set, ρ of class C^1 and $\{\rho > 0\}$ connected

Then, the damped Newton algorithm for SD-OT conver d with $Y \subset \mathbb{R}^d$ be a finite set, ρ of class C^1 and $\{\rho > 0\}$ connected.

Then, the damped Newton algorithm for SD-OT converges globally with linear rate and locally with quadratic rate.

$$
||G(\psi^{k+1}) - \nu|| \le \left(1 - \frac{\tau^*}{2}\right)^2 ||G(\psi^k) - \nu||
$$

[Kitagawa, Mérigot, T., JEMS 2017]

Convergence in the quadratic case

Theorem: Let *X* be a (closed) convex bounded domain of R
 $Y \subset \mathbb{R}^d$ be a finite set, ρ of class C^1 and $\{\rho > 0\}$ connected

Then, the damped Newton algorithm for SD-OT conve d with $Y \subset \mathbb{R}^d$ be a finite set, ρ of class C^1 and $\{\rho > 0\}$ connected.

Then, the damped Newton algorithm for SD-OT converges globally with linear rate and locally with quadratic rate.

$$
||G(\psi^{k+1}) - \nu|| \le \left(1 - \frac{\tau^*}{2}\right)^2 ||G(\psi^k) - \nu||
$$

[Kitagawa, Mérigot, T., JEMS 2017]

▶ Holds when $X \subset M$ Riemannian manifold, $c \in C^2$ satistifes Twist, MTW.

 d with $Y \subset \mathbb{R}^d$ be a finite set, ρ of class C^1 and $\{\rho > 0\}$ connected.

Then, the damped Newton algorithm for SD-OT converges globally with linear rate and locally with quadratic rate.

$$
||G(\psi^{k+1}) - \nu|| \le \left(1 - \frac{\tau^*}{2}\right)^2 ||G(\psi^k) - \nu||
$$

[Kitagawa, Mérigot, T., JEMS 2017]

Convergence in the quadratic case

Theorem: Let *X* be a (closed) convex bounded domain of R
 $Y \subset \mathbb{R}^d$ be a finite set, ρ of class C^1 and $\{\rho > 0\}$ connected

Then, the damped Newton algorithm for SD-OT conve \blacktriangleright Holds when $X \subset \mathbb{R}^d$ → Holds when $X \subset M$ Riemannian manifold, $c \in C^2$ satistifes Twist, MTW.
► Holds when $X \subset \mathbb{R}^d$, c satistifes Twist. No convexity assumption but genericity conditions [Mérigot, T., 2020]

; $\nu = \frac{1}{N}$ N $\sum_i \delta_{y_i}$

; $\nu = \frac{1}{N}$ N $\sum_i \delta_{y_i}$

diagramme de Laguerre

$$
||G(\psi^0) - \nu||_1
$$

$$
\simeq 1.8
$$

; $\nu = \frac{1}{N}$ N $\sum_i \delta_{y_i}$

diagramme de Laguerre

$$
\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{1/2}
$$

$$
||G(\psi^0) - \nu||_1
$$

$$
\simeq 1.8
$$

Quadratic cost: numerics

Target: Uniform grid Y in $[0, 1]^2$.

Quadratic cost: numerics

 $\text{Lag}(\psi^8)$

Target: Uniform grid Y in $[0, 1]^2$.

Quadratic cost: numerics

 $\text{Lag}(\psi^8)$

Target: Uniform grid Y in $[0, 1]^2$.

-
- $N = 10⁷$ pb solved in 17 iterations.psdot (python); geogram

-
- ■

■

 Case 1: mirror for point light source

 Case 2: mirror for collimated source light

 Optimal transport

 Semi-discrete optimal transport

 Damped Newton algorithm

 Non-imaging optics: Far-Field target

 N
	-
	-
	-
	-
	-

\blacktriangleright Newton schemes:
Computation of descent direction / time step

 \blacktriangleright Evaluation of G and DG :

$$
\int_{V_i} \mathrm{d}\,\mu(x) \qquad \int_{V_{ij}} \mathrm{d}\,\mu(x)
$$

INE Newton schemes:

Computation of descent direction / time step

 \blacktriangleright Evaluation of G and DG :

$$
\int_{V_i} d\mu(x) \qquad \int_{V_{ij}} d\mu(x)
$$

Main difficulty: computation of visibility cells V_i

Mirror / Point light source: implementation
Computation of Visibility (Laguerre) cells

Definition: Given $P = \{p_i$
 $\text{Pow}_P^{\omega}(p_i) := \{p_i\}$

31 - 1 $\}_{1\leq i\leq N}\subseteq \mathbb{R}^d$ and $(\omega_i)_{1\leq i\leq N}\in \mathbb{R}^N$ $\mathrm{Pow}_P^\omega(p_i) := \{x \in \mathbb{R}^d; i = \argmin_j \|x - p_j\|^2 + \omega_j\}$

Mirror / Point light source: implementation
Computation of Visibility (Laguerre) cells

Definition: Given
$$
P = \{p_i\}_{1 \leq i \leq N} \subseteq \mathbb{R}^d
$$
 and $(\omega_i)_{1 \leq i \leq N} \in \mathbb{R}^N$
\n
$$
Pow_P^{\omega}(p_i) := \{x \in \mathbb{R}^d; i = \arg \min_j ||x - p_j||^2 + \omega_j\}
$$
\n
$$
\blacktriangleright
$$
 Efficient computation of $(Pow_P^{\omega}(p_i))_i$ using **CGAL** ($d = 2$,
\n31 - 2

Efficient computation of $(\mathrm{Pow}_P^{\omega}(p_i))_i$ using CGAL $(d = 2, 3)$

Mirror / Point light source: implementation
Computation of Visibility (Laguerre) cells

Definition: Given
$$
P = \{p_i\}_{1 \leq i \leq N} \subseteq \mathbb{R}^d
$$
 and $(\omega_i)_{1 \leq i \leq N} \in \mathbb{R}^N$
\n
$$
Pow_P^{\omega}(p_i) := \{x \in \mathbb{R}^d; i = \arg \min_j ||x - p_j||^2 + \omega_j\}
$$

Efficient computation of $(\mathrm{Pow}_P^{\omega}(p_i))_i$ using CGAL $(d = 2, 3)$

Lemma: With
$$
\vec{\psi} = \log(\vec{\kappa})
$$
, $p_i := -\frac{y_j}{2\kappa_j}$ and $\omega_i := -\|\frac{y_j}{2\kappa_j}\|^2 - \frac{1}{\kappa_i}$,
\n $V_i(\kappa) = \text{Pow}_P^{\omega}(p_i) \cap \mathbb{S}^2$
\n31 - 3

 $\mu=$ uniform measure on half-sphere \mathbb{S}^{2}_{+} $+$

 $\sum_{i=1}^N \nu_i \delta_{x_i}$ discretization of Cameraman $(N=400^2)$.

 $\mu=$ uniform measure on half-sphere \mathbb{S}^{2}_{+} $+$

Collimated source / Far Field Target	
Mirror R	targeted image N = 400 × 480
$\mathbb{R}^2 \times \{0\}$	\sim 50%
Collimated source	
Mirror R	$V_i(\psi) = \text{Pow}(p_i) \cap (\mathbb{R}^2 \times \{0\})$
light source	

 $(\psi) = \text{Pow}(p_i) \cap X$ where $X = \mathbb{S}^2, \mathbb{R}^2 \times \{0\}$ \rightsquigarrow Automatic differentiation

-
-

 Case 1: mirror for point light source

 Case 2: mirror for collimated light source

 Optimal transport

 Semi-discrete optimal transport

 Damped Newton algorithm

 Non-imaging optics: Far-Field target

 Non-im
	-
	-
	-
	-
	-

Iterated FF problem

1 Lerated FF problem
 NF pb: Build a component R sending light towards z_1, \ldots, z_N

(instead of y_1

38 - 1 $\in \{D\} \times \mathbb{R}^2$ (instead of $y_1, \ldots, y_N \in \mathbb{S}^2$))

Iterated FF problem

 $\in \{D\} \times \mathbb{R}^2$

Step 0: Solve far-field problem with target y (0) $\sum_{i=1}^{(n)} |z_i|$

Step 0: Solve far-field problem with target y (0) $\sum_{i=1}^{(n)} |z_i|$

Step 0: Solve far-field problem with target y (0) $\sum_{i=1}^{(n)} |z_i|$

Step 0: Solve far-field problem with target y (0) $\sum_{i=1}^{(n)} |z_i|$ Step 1: Solve far-field problem with target y (1) $i^{(1)} = (z_i - b)$ (0) $\binom{(0)}{i} / ||z_i - b$ (0) $\binom{(\mathsf{U})}{i}$

Step 0: Solve far-field problem with target y (0) $\sum_{i=1}^{(n)} |z_i|$ Step 1: Solve far-field problem with target y (1) $i^{(1)} = (z_i - b)$ (0) $\binom{(0)}{i} / ||z_i - b$ (0) $\binom{(\mathsf{U})}{i}$

Pillows
40 - 1
40 - 1

Pillows
40 - 2
40 - 2

Pillows
40 - 3
40 - 3

Conclusion
We solved 4 inverse problems arising in nonimaging optics
using semi-discrete approach and optimal transport

► Each problem is a Monge-Ampère equation

► Iterative procedure for real-life light target

► Iter

-
- 2 or $\mathbb{S}^2 \leadsto \mathsf{Newton}$ algorithm
- \blacktriangleright Iterative procedure for real-life light target

-
- 2 or $\mathbb{S}^2 \leadsto \mathsf{Newton}$ algorithm
-

Conclusion

We solved 4 inverse problems arising in nonimaging optics

using semi-discrete approach and optimal transport

► Each problem is a Monge-Ampère equation

► For far-field target, OT problem on \mathbb{R}^2 or $\$ near field target) : Anatole Gallouet's talk► Iterative procedure for real-life light target

Ongoing work

→ Generalization to generated jacobian equations (application to optics,

near field target) : Anatole Gallouet's talk

→ Extended light (Jean-Baptiste Keck

-
- \rightsquigarrow Metasurfaces (with Cristian Gutierrez)

-
- 2 or $\mathbb{S}^2 \leadsto \mathsf{Newton}$ algorithm
-

Conclusion

We solved 4 inverse problems arising in nonimaging optics

using semi-discrete approach and optimal transport

► Each problem is a Monge-Ampère equation

► For far-field target, OT problem on \mathbb{R}^2 or $\$ near field target) : Anatole Gallouet's talk► Iterative procedure for real-life light target

Ongoing work

→ Generalization to generated jacobian equations (application to optics,

near field target) : Anatole Gallouet's talk

→ Extended light (Jean-Baptiste Keck

-
- \rightsquigarrow Metasurfaces (with Cristian Gutierrez)