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1 - 2

Numerical resolution of Monge-Ampère
equations arising in optics

Boris Thibert

Digital Geometry and Discrete Variational Calculus
Luminy (CIRM) - April 1 2021

Joint works with Quentin Mérigot and Jocelyn Meyron
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Nonimaging optics: motivations
Goal: design components that transfer a prescribed light source

to a prescribed target illumination
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Nonimaging optics: motivations
Goal: design components that transfer a prescribed light source

to a prescribed target illumination

Motivations / applications

I Car beam design

I Public lighting: stadium, streets,...

I Reduction of light pollution
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Imaging optics: mirror case

We are given a one-to-one map f : X → Y .
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Imaging optics: mirror case

We are given a one-to-one map f : X → Y .

Goal: Find a surface S such that the reflection of X onto Y preserves f .

fS

~nS

x

f(x)



4 - 1

Non-imaging optics: mirror case

No one-to-one map givenInput: Light source with intensity µ

Target illumination with intensity ν

µ

ν
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Non-imaging optics: mirror case

No one-to-one map given

Goal: Find a surface S such that reflects µ to the ν by Snell’s law

S

Input: Light source with intensity µ

Target illumination with intensity ν

µ

ν
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Four non-imaging optics problems

Point source

R2 × {0}
Collimated source

S2 Target light

Lens R

S2
Targ

et
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ht

Mirror R

0

Point source

S2 Target light

Lens R

0

S2
Targ

et
lig

ht

Mirror R

Collimated source

R2 × {0}

concave too

Four inverse problems
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Outline

I Case 1: mirror for point light source

I Case 2: mirror for collimated light source

I Semi-discrete optimal transport

I Non-imaging optics: Far-Field target

I Optimal transport

I Damped Newton algorithm

I Non-imaging optics: Near-Field target
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Mirror / Point light source

S2∞
Punctual light at origin o, µ measure on S2o
Prescribed far-field: ν on S2∞

S2o

o
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ν
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Punctual light at origin o, µ measure on S2o
Prescribed far-field: ν on S2∞
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Goal: Find a surface R which sends (S2o, µ) to

(S∞, ν) under reflection by Snell’s law.
o
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I R is parameterized by x ∈ S20 7→ xu(x)

µ
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where u : S20 → R+ radial distance
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Mirror / Point light source

S2∞
Punctual light at origin o, µ measure on S2o
Prescribed far-field: ν on S2∞

S2o

Goal: Find a surface R which sends (S2o, µ) to

(S∞, ν) under reflection by Snell’s law.o
o

R

I R is parameterized by x ∈ S20 7→ xu(x)

I Snell’s law
Tu : x ∈ S20 7→ y = x− 2〈x|nu〉nu

Brenier formulation

i.e. for every borelian B

T]µ = ν
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Mirror / Point light source

S2∞
Punctual light at origin o, µ measure on S2o
Prescribed far-field: ν on S2∞

S2o

Goal: Find a surface R which sends (S2o, µ) to

(S∞, ν) under reflection by Snell’s law.o
o

R

I R is parameterized by x ∈ S20 7→ xu(x)

I Snell’s law
Tu : x ∈ S20 7→ y = x− 2〈x|nu〉nu

Brenier formulation

i.e. for every borelian B

Change of variable

g(T (x)) det(DT (x)) = f(x)

T]µ = ν

µ(T−1(B)) = ν(B)

If µ(x) = f(x)dx and ν(y) = g(y)dy

µ

ν
where u : S20 → R+ radial distance

x

xu(x)

B

T−1(B)
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Mirror / Point light source

S2∞
Punctual light at origin o, µ measure on S2o
Prescribed far-field: ν on S2∞

S2o

Goal: Find a surface R which sends (S2o, µ) to

(S∞, ν) under reflection by Snell’s law.
o

R

I R is parameterized by x ∈ S20 7→ xu(x)

I Snell’s law
Tu : x ∈ S20 7→ y = x− 2〈x|nu〉nu

µ

ν

Monge-Ampère equation
g(Tu(x)) det(DTu(x)) = f(x)
Tu(x) = x− 〈x|nu(x)〉nu(x)

nu(x) = ∇u(x)−u(x)x√
‖∇u(x)‖2+u(x)2

,

where u : S20 → R+ radial distance

x

xu(x)

with boundary and other conditions

Find u : S20 → R+ s.t.
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Mirror / Point light source

S2∞
Punctual light at origin o, µ measure on S2o
Prescribed far-field: ν on S2∞

S2o

Goal: Find a surface R which sends (S2o, µ) to

(S∞, ν) under reflection by Snell’s law.
o

R

I R is parameterized by x ∈ S20 7→ xu(x)

I Snell’s law
Tu : x ∈ S20 7→ y = x− 2〈x|nu〉nu

Caffarelli & Oliker 94

I Existence of weak solutions

Wang 96, Guan & Wang 98, Caffarelli Gutierrez & Huang ’08

I Existence of solutions, regularity

µ

ν

Monge-Ampère equation
g(Tu(x)) det(DTu(x)) = f(x)
Tu(x) = x− 〈x|nu(x)〉nu(x)

nu(x) = ∇u(x)−u(x)x√
‖∇u(x)‖2+u(x)2

,

where u : S20 → R+ radial distance

x

xu(x)

with boundary and other conditions

Find u : S20 → R+ s.t.
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Mirror / Point light source: semi-discrete

S2∞
Punctual light at origin o, µ measure on S2o

S2o
o
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Mirror / Point light source: semi-discrete

S2∞
Punctual light at origin o, µ measure on S2o
Prescribed far-field: ν = ν1δy1 on S2∞

S2o
o

y1
µ
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Mirror / Point light source: semi-discrete

S2∞
Punctual light at origin o, µ measure on S2o
Prescribed far-field: ν = ν1δy1 on S2∞

S2o
o

R

y1 R : paraboloid of direction y1 and focal O

µ
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Mirror / Point light source: semi-discrete

S2∞

y1

y2

y3

Punctual light at origin o, µ measure on S2o

S2o
o

Prescribed far-field: ν =
∑
i νiδyi on S2∞
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Mirror / Point light source: semi-discrete
y1

y2

y3

Punctual light at origin o, µ measure on S2o

Pi(κi) = solid paraboloid of revolution with focal o,

direction yi and focal distance κi

R(~κ) = ∂
(
∩Ni=1Pi(κi)

)

o

P3

P2

µ

P1

Prescribed far-field: ν =
∑
i νiδyi on S2∞
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Mirror / Point light source: semi-discrete
y1

y2

y3

Punctual light at origin o, µ measure on S2o

Pi(κi) = solid paraboloid of revolution with focal o,

direction yi and focal distance κi

R(~κ) = ∂
(
∩Ni=1Pi(κi)

)
Decomposition of S2o: Vi(~κ) = πS2

o
(R(~κ) ∩ ∂Pi(κi))

R(~κ) ∩ ∂P3(κ3)
V3(~κ)

o

P3

P2

µ

= directions that are reflected towards yi.

Prescribed far-field: ν =
∑
i νiδyi on S2∞
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Mirror / Point light source: semi-discrete
y1

y2

y3

Punctual light at origin o, µ measure on S2o

Pi(κi) = solid paraboloid of revolution with focal o,

direction yi and focal distance κi

R(~κ) = ∂
(
∩Ni=1Pi(κi)

)
Decomposition of S2o: Vi(~κ) = πS2

o
(R(~κ) ∩ ∂Pi(κi))

Problem (FF): Find κ1, . . . , κN such that for every i, µ(Vi(~κ)) = νi.

R(~κ) ∩ ∂P3(κ3)
V3(~κ)

amount of light reflected in direction yi.

o

P3

P2

µ

= directions that are reflected towards yi.

Prescribed far-field: ν =
∑
i νiδyi on S2∞
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Mirror / Point light source: Optimal Transport

Lemma: With c(x, y) = − log(1− 〈x|y〉), and ψi := log(κi),

Vi(~κ) = {x ∈ S20, c(x, yi) + ψi ≤ c(x, yj) + ψj ∀j}.

P1

V3(~κ)

o

P3

P2

Caffarelli-Oliker ’94
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Mirror / Point light source: Optimal Transport

Proof: ∂Pi(κi) is parameterized in radial coordinates by

Lemma: With c(x, y) = − log(1− 〈x|y〉), and ψi := log(κi),

Vi(~κ) = {x ∈ S20, c(x, yi) + ψi ≤ c(x, yj) + ψj ∀j}.

P1

V3(~κ)

o

P3

P2

ρi : x ∈ S2o 7→ κi
1−〈x|yi〉

Caffarelli-Oliker ’94
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Mirror / Point light source: Optimal Transport

Proof: ∂Pi(κi) is parameterized in radial coordinates by
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1−〈x|yi〉 ≤
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1−〈x|yj〉x ∈ Vi(~κ)
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⇐⇒ ψi + c(x, yi) ≤ ψj + c(x, yj)
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Mirror / Point light source: Optimal Transport

Proof: ∂Pi(κi) is parameterized in radial coordinates by

⇐⇒ κi
1−〈x|yi〉 ≤

κj
1−〈x|yj〉x ∈ Vi(~κ)

⇐⇒ log(κi)− log(1− 〈x|yi〉) ≤ · · ·

⇐⇒ ψi + c(x, yi) ≤ ψj + c(x, yj)

Lemma: With c(x, y) = − log(1− 〈x|y〉), and ψi := log(κi),

Vi(~κ) = {x ∈ S20, c(x, yi) + ψi ≤ c(x, yj) + ψj ∀j}.

P1

V3(~κ)

o

P3

P2

ρi : x ∈ S2o 7→ κi
1−〈x|yi〉

Wang ’04

Caffarelli-Oliker ’94

 An optimal transport problem on S2

Problem (FF): Find κ1, . . . , κN such that for every i, µ(Vi(~κ)) = νi.
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Outline

I Case 1: mirror for point light source

I Case 2: mirror for collimated light source

I Semi-discrete optimal transport

I Non-imaging optics: Far-Field target

I Optimal transport

I Damped Newton algorithm

I Non-imaging optics: Near-Field target
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Mirror / Collimated light source

S2
Targ
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Mirror R

Collimated source

Ω

Collimated light µ measure on Ω ⊂ R2 × {0}
Prescribed far-field: ν on S2

Goal: Find a surface R which sends (Ω, µ) to

(S2, ν) under reflection by Snell’s law.

νµ
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I R param. by x ∈ Ω 7→ (x,u(x))
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where u : Ω→ R height function

Brenier formulation (F ◦ ∇u)]µ = ν
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Mirror / Collimated light source

S2
Targ

et
lig

ht

Mirror R

Collimated source

Ω

Collimated light µ measure on Ω ⊂ R2 × {0}
Prescribed far-field: ν on S2

Goal: Find a surface R which sends (Ω, µ) to

(S2, ν) under reflection by Snell’s law.

I R param. by x ∈ Ω 7→ (x,u(x))

I Snell’s law: the ray ez coming from x

is reflected in direction F (∇u(x)).

where u : Ω→ R height function

Brenier formulation (F ◦ ∇u)]µ = ν

⇔ ∀B µ((∇u)−1(B)) = ν̃(B)

⇔ ∀A µ((F ◦ ∇u)−1(A)) = ν(A)

⇔ det(∇2u(x))g(∇u(x)) = f(x) if µ(x) = f(x)dx and ν̃(x) = g(x)dx

with B = F−1(A) ⊂ R2

νµ
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Mirror / Collimated light source

S2
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Mirror R

Collimated source

Ω

Collimated light µ measure on Ω ⊂ R2 × {0}
Prescribed far-field: ν on S2

Goal: Find a surface R which sends (Ω, µ) to

(S2, ν) under reflection by Snell’s law.

I R param. by x ∈ Ω 7→ (x,u(x))

I Snell’s law: the ray ez coming from x

is reflected in direction F (∇u(x)).

where u : Ω→ R height function

Monge-Ampère equation in R2

Find u : Ω→ R2 such that det(∇2u(x))g(∇u(x)) = f(x)

νµ

with boundary conditions
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Mirror / Collimated light source: semi-discrete

mirror S

light source

yix

(x, 〈x|pi〉 − ψi)

Collimated light µ measure on Ω ⊂ R2 × {0}
Prescribed far-field: ν =

∑
i νiδyi on S2

S2

Targ
et

lig
htVi(~ψ) ν

µ
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Mirror / Collimated light source: semi-discrete
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Mirror / Collimated light source: semi-discrete

mirror S

light source

yix

(x, 〈x|pi〉 − ψi)

Collimated light µ measure on Ω ⊂ R2 × {0}
Prescribed far-field: ν =

∑
i νiδyi on S2
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x ∈ Ω 7→ (x,maxi〈x|pi〉 − ψi)
Vi(~ψ) ν

µ

S is convex
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Mirror / Collimated light source: semi-discrete

mirror S

light source

yix

(x, 〈x|pi〉 − ψi)

Collimated light µ measure on Ω ⊂ R2 × {0}
Prescribed far-field: ν =

∑
i νiδyi on S2

S2

Targ
et

lig
htWe choose a mirror parametrized by

x ∈ Ω 7→ (x,maxi〈x|pi〉 − ψi)

Problem (FF): Find ψ1, . . . , ψN such that for every i, µ(Vi(~ψ)) = νi.

amount of light reflected in direction yi.

Vi(~ψ) ν

µ

S is convex
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Mirror / Collimated source: Optimal Transport

Lemma: With c(x, y) = −〈x|y〉
Vi(~ψ) = {x ∈ R2, c(x, yi) + ψi ≤ c(x, yj) + ψj ∀j}.

mirror S

light source

yix

(x, 〈x|p(y)〉 − ψi)

Vi(~ψ)
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Mirror / Collimated source: Optimal Transport

Lemma: With c(x, y) = −〈x|y〉
Vi(~ψ) = {x ∈ R2, c(x, yi) + ψi ≤ c(x, yj) + ψj ∀j}.

mirror S

light source

yix

(x, 〈x|p(y)〉 − ψi)

Vi(~ψ)

 Optimal transport problem in R2

Problem (FF): Find ψ1, . . . , ψN such that for every i, µ(Vi(~ψ)) = νi.
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Outline

I Case 1: mirror for point light source

I Case 2: mirror for collimated light source

I Semi-discrete optimal transport

I Non-imaging optics: Far-Field target

I Optimal transport

I Damped Newton algorithm

I Non-imaging optics: Near-Field target
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Monge problem (1781)
How to optimally move sand ?
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Monge problem (1781)

X, µ

Y, ν

Let c : X × Y → R be a cost function

How to optimally move sand ?

e.g. c(x, y) = ‖x− y‖2
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Monge problem (1781)

X, µ

Y, ν
T ?

Let c : X × Y → R be a cost function

Find a map T : X → Y such thatMonge problem.

I T preserves the mass, i.e. ν(A) = µ(T−1(A))

I T minimizes the total cost

min
∫
X
c(x, T (x))dµ(x)

How to optimally move sand ?

e.g. c(x, y) = ‖x− y‖2

The minimizer does not always exist; Constraint not linear

T−1(A)

A
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Monge problem (1781)

X, µ

Y, ν

Let c : X × Y → R be a cost function

How to optimally move sand ?

e.g. c(x, y) = ‖x− y‖2

Kantorovitch relaxation – 1940’s

Minimise
∫
c(x, y)dπ(x, y)

where π is a transport plan, i.e

π(A× Y ) = µ(A)

π(X ×B) = ν(B)

π is a probability measure on X × Y
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Discretization of optimal transport

linear programming

Discrete source and target

Bertsekas’ auction algorithm

µi νj

Sinkhorn/IPFP

Numerical optimal transport
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Discretization of optimal transport

linear programming

Discrete source and target

Bertsekas’ auction algorithm

µi νj

Source and target with density (PDE):

Benamou-Brenier formulation

Stencil methods for Monge Ampère equations

Sinkhorn/IPFP

Numerical optimal transport
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Discretization of optimal transport

linear programming

Discrete source and target

Bertsekas’ auction algorithm

µi νj

Source with density, discrete target:

Kitagawa ’12

Source and target with density (PDE):

Benamou-Brenier formulation

Stencil methods for Monge Ampère equations

Sinkhorn/IPFP

Aurenhammer, Hoffmann, Aronov ’98

Oliker-Prussner ’89 Caffarelli-Kochengin-Oliker ’97

Mérigot ’11, Levy’15, Kitagawa-Mérigot-T.’17, etc.

Numerical optimal transport

Coordinate-wise increment

Newton and quasi-Newton methods
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Outline

I Case 1: mirror for point light source

I Case 2: mirror for collimated source light

I Semi-discrete optimal transport

I Non-imaging optics: Far-Field target

I Optimal transport

I Damped Newton algorithm

I Non-imaging optics: Near-Field target
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Semi-discrete optimal transport
µ(x) = ρ(x)dx probability measure on X

ν =
∑
i νiδyi prob. measure on finite Y = {y1, · · · , yN}

c : X × Y → R cost function

YX
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Semi-discrete optimal transport
µ(x) = ρ(x)dx probability measure on X

ν =
∑
i νiδyi prob. measure on finite Y = {y1, · · · , yN}

Transport map: T : X → Y s.t. ∀i, µ(T−1({yi})) = νi (i.e. T#µ = ν)

c : X × Y → R cost function

YX y1

T−1(y1)
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Semi-discrete optimal transport
µ(x) = ρ(x)dx probability measure on X

ν =
∑
i νiδyi prob. measure on finite Y = {y1, · · · , yN}

∫
X
c(x, T (x)) dµ(x)

Transport map: T : X → Y s.t. ∀i, µ(T−1({yi})) = νi (i.e. T#µ = ν)

c : X × Y → R cost function

Monge problem: Find a transport map T : X → Y that minimizes

YX y1

T−1(y1)
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Semi-discrete OT and Laguerre diagrams

ρ : X → R density of population

Y = location of bakeries

c(x, yi) := ‖x− yi‖2 Y
X

Semi-discrete optimal transport
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Semi-discrete OT and Laguerre diagrams

ρ : X → R density of population

Y = location of bakeries

c(x, yi) := ‖x− yi‖2

Vor(yi) = {x ∈ X;∀j, c(x, yi) ≤ c(x, yj)}

I If the price of bread is uniform, people go the closest bakery:

Y
X

Semi-discrete optimal transport
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Semi-discrete OT and Laguerre diagrams

ρ : X → R density of population

Y = location of bakeries

c(x, yi) := ‖x− yi‖2

I If prices are given by ψ1, · · · , ψN , people make a compromise:

Lagi(ψ) = {x ∈ X;∀j, c(x, yi) + ψi ≤ c(x, yj) + ψj}

Y
X

Semi-discrete optimal transport
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Semi-discrete OT and Laguerre diagrams

ρ : X → R density of population

Y = location of bakeries

c(x, yi) := ‖x− yi‖2

I If prices are given by ψ1, · · · , ψN , people make a compromise:

Lagi(ψ) = {x ∈ X;∀j, c(x, yi) + ψi ≤ c(x, yj) + ψj}

Y
X

Lemma: The map Tψ : X → Y is an optimal transport map between

x
Tψ(x)

Semi-discrete optimal transport

ρ and νψ where νψ,i = ρ(Lagi(ψ)) is the measure of Lagi(ψ)
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Semi-discrete OT and Laguerre diagrams
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Y
X

Lemma: The map Tψ : X → Y is an optimal transport map between

x
Tψ(x)

Semi-discrete optimal transport

For other costs c, (Twist): ∀x, the map y 7→ ∇xc(x, y) is injective

ρ and νψ where νψ,i = ρ(Lagi(ψ)) is the measure of Lagi(ψ)
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Semi-discrete OT and Laguerre diagrams

ρ : X → R density of population

Y = location of bakeries

c(x, yi) := ‖x− yi‖2

I If prices are given by ψ1, · · · , ψN , people make a compromise:

Lagi(ψ) = {x ∈ X;∀j, c(x, yi) + ψi ≤ c(x, yj) + ψj}

Y
X

Solving OT between ρ and ν ⇐⇒ Finding ψ s.t. ρ(Lagi(ψ)) = νi ∀i

Lemma: The map Tψ : X → Y is an optimal transport map between

x
Tψ(x)

Semi-discrete optimal transport

For other costs c, (Twist): ∀x, the map y 7→ ∇xc(x, y) is injective

ρ and νψ where νψ,i = ρ(Lagi(ψ)) is the measure of Lagi(ψ)
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Optimal transport as Concave Maximization

Theorem: Finding an optimal transport between ρ and ν =
∑
i νiδyi

⇐⇒ maximizing the concave function Φ : RN → R

Aurenhammer, Hoffman, Aronov ’98

Φ(ψ) :=
∑
i

∫
Lagi(ψ)

[c(x, yi) + ψi] d ρ(x)−
∑
i ψiνi

Kantorovitch duality
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Aurenhammer, Hoffman, Aronov ’98

Φ(ψ) :=
∑
i

∫
Lagi(ψ)

[c(x, yi) + ψi] d ρ(x)−
∑
i ψiνi

I Recast of Kantorovich duality.

Kantorovitch duality
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Optimal transport as Concave Maximization

Theorem: Finding an optimal transport between ρ and ν =
∑
i νiδyi

⇐⇒ maximizing the concave function Φ : RN → R

Aurenhammer, Hoffman, Aronov ’98

Φ(ψ) :=
∑
i

∫
Lagi(ψ)

[c(x, yi) + ψi] d ρ(x)−
∑
i ψiνi

I Recast of Kantorovich duality.

I ∇Φ(ψ) = (ρ(Lagi(ψ))− νi)1≤i≤N . Hence,

∇Φ = 0 ⇐⇒∀i, ρ(Lagi(ψ)) = νi.

Kantorovitch duality

(discrete Monge-Ampère equation)
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Optimal transport as Concave Maximization

Theorem: Finding an optimal transport between ρ and ν =
∑
i νiδyi

⇐⇒ maximizing the concave function Φ : RN → R

Aurenhammer, Hoffman, Aronov ’98

Φ(ψ) :=
∑
i

∫
Lagi(ψ)

[c(x, yi) + ψi] d ρ(x)−
∑
i ψiνi

I Recast of Kantorovich duality.

I ∇Φ(ψ) = (ρ(Lagi(ψ))− νi)1≤i≤N . Hence,

∇Φ = 0 ⇐⇒∀i, ρ(Lagi(ψ)) = νi.

I Existing numerical methods: coordinate-wise increment with minimum
step, [Oliker–Prussner ’99]with complexity O(N

3

ε log(N)), ε = precision.

Kantorovitch duality

(discrete Monge-Ampère equation)
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Optimal transport as Concave Maximization

Theorem: Finding an optimal transport between ρ and ν =
∑
i νiδyi

⇐⇒ maximizing the concave function Φ : RN → R

Aurenhammer, Hoffman, Aronov ’98

Φ(ψ) :=
∑
i

∫
Lagi(ψ)

[c(x, yi) + ψi] d ρ(x)−
∑
i ψiνi

I Recast of Kantorovich duality.

I ∇Φ(ψ) = (ρ(Lagi(ψ))− νi)1≤i≤N . Hence,

∇Φ = 0 ⇐⇒∀i, ρ(Lagi(ψ)) = νi.

I Quasi Newton methods for c(x, y) = ‖x− y‖2 on R2/R3 S2
[Mérigot. ’11] [Lévy ’14]

I Existing numerical methods: coordinate-wise increment with minimum
step, [Oliker–Prussner ’99]with complexity O(N

3

ε log(N)), ε = precision.

Kantorovitch duality

(discrete Monge-Ampère equation)

I Newton method in R2, R3, when µ supported on a triangulation.

[Machado, Mérigot, Thibert ’16][de Goes et al ’12]

No analysis
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Outline

I Case 1: mirror for point light source

I Case 2: mirror for collimated source light

I Semi-discrete optimal transport

I Non-imaging optics: Far-Field target

I Optimal transport

I Damped Newton algorithm

I Non-imaging optics: Near-Field target
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Damped Newton’s Algorithm

Equation ρ(Lagi(ψ)) = νi for all i

Newton Algorithm

YX
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Damped Newton’s Algorithm

Equation ρ(Lagi(ψ)) = νi for all i

Newton Algorithm

We define G : RN → RN by G(ψ) = (ρ(Lagi(ψ)))1≤i≤N

Equation G(ψ) = ν

Remark: G is invariant by addition of a vector λ(1, · · · , 1).

YX
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Damped Newton’s Algorithm

Loop: −→ Calculate dk s.t. DG(ψk)dk = G(ψk)− ν and
∑
i d
k
i = 0

Newton algorithm: for solving G(ψ) = ν

Equation ρ(Lagi(ψ)) = νi for all i

Input: ψ0 ∈ RN s.t. ε := 1
2

mini min(G(ψ0)i, νi) > 0

−→ ψk+1 := ψk − dk

Newton Algorithm

We define G : RN → RN by G(ψ) = (ρ(Lagi(ψ)))1≤i≤N

Equation G(ψ) = ν

Remark: G is invariant by addition of a vector λ(1, · · · , 1).

YX
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Damped Newton’s Algorithm

Loop: −→ Calculate dk s.t. DG(ψk)dk = G(ψk)− ν and
∑
i d
k
i = 0

Newton algorithm: for solving G(ψ) = ν

Equation ρ(Lagi(ψ)) = νi for all i

Input: ψ0 ∈ RN s.t. ε := 1
2

mini min(G(ψ0)i, νi) > 0

−→ ψk+1 := ψk − dk

Newton Algorithm

We define G : RN → RN by G(ψ) = (ρ(Lagi(ψ)))1≤i≤N

Equation G(ψ) = ν

Remark: G is invariant by addition of a vector λ(1, · · · , 1).

Local convergence : if ψ0 is close to a solution ψ∗, then it converges.

YX
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Damped Newton’s Algorithm

Loop: −→ Calculate dk s.t. DG(ψk)dk = G(ψk)− ν and
∑
i d
k
i = 0

Newton algorithm: for solving G(ψ) = ν

Equation ρ(Lagi(ψ)) = νi for all i

Input: ψ0 ∈ RN s.t. ε := 1
2

mini min(G(ψ0)i, νi) > 0

−→ ψk+1 := ψk − dk

Newton Algorithm

We define G : RN → RN by G(ψ) = (ρ(Lagi(ψ)))1≤i≤N

Equation G(ψ) = ν

Remark: G is invariant by addition of a vector λ(1, · · · , 1).

Local convergence : if ψ0 is close to a solution ψ∗, then it converges.

YX

Remark: If Lagi(ψ) = ∅ then DGi(ψ) = 0 locally and dk not unique.

We want to enforce Lagi(ψ
k) 6= ∅.

How about global convergence ?
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Damped Newton’s Algorithm

Equation G(ψ) = ν

Admissible domain: Eε := {ψ ∈ RN ; ∀i, ρ(Lagi(ψ) ≥ ε}

ρ(Lagi(ψ)) ≥ ε

Damped Newton Algorithm

where G(ψ) = (ρ(Lagi(ψ)))1≤i≤N
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Damped Newton’s Algorithm

Loop: → Calculate dk s.t. DG(ψk)dk = G(ψk)− ν and
∑
i d
k
i = 0

Damped Newton algorithm: for solving G(ψ) = ν

Equation G(ψ) = ν

→ τk = max{τ ∈ 2−N | ψkτ ∈ Eε and ‖G(ψkτ )− ν‖ ≤ (1− τ
2
)‖G(ψk)− ν‖}

Input: ψ0 ∈ RN s.t. ε := 1
2

mini min(G(ψ0)i, νi) > 0

Admissible domain: Eε := {ψ ∈ RN ; ∀i, ρ(Lagi(ψ) ≥ ε}

ρ(Lagi(ψ)) ≥ ε

→ ψk+1 := ψk − τkdk

Damped Newton Algorithm

where G(ψ) = (ρ(Lagi(ψ)))1≤i≤N

→ Define ψk,τ = ψk − τdk
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Damped Newton’s Algorithm

Loop: → Calculate dk s.t. DG(ψk)dk = G(ψk)− ν and
∑
i d
k
i = 0

Damped Newton algorithm: for solving G(ψ) = ν

Remark: The damped Newton’s algorithm converges globally provided that:

(Smoothness): G is C1 on Eε.

Equation G(ψ) = ν

→ τk = max{τ ∈ 2−N | ψkτ ∈ Eε and ‖G(ψkτ )− ν‖ ≤ (1− τ
2
)‖G(ψk)− ν‖}

Input: ψ0 ∈ RN s.t. ε := 1
2

mini min(G(ψ0)i, νi) > 0

Admissible domain: Eε := {ψ ∈ RN ; ∀i, ρ(Lagi(ψ) ≥ ε}

ρ(Lagi(ψ)) ≥ ε

→ ψk+1 := ψk − τkdk

Damped Newton Algorithm

where G(ψ) = (ρ(Lagi(ψ)))1≤i≤N

→ Define ψk,τ = ψk − τdk
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Damped Newton’s Algorithm

Loop: → Calculate dk s.t. DG(ψk)dk = G(ψk)− ν and
∑
i d
k
i = 0

Damped Newton algorithm: for solving G(ψ) = ν

Remark: The damped Newton’s algorithm converges globally provided that:

(Strict monotonicity): ∀ψ ∈ Eε, DG(ψ) is neg. definite on Eε ∩ {cst}⊥
(Smoothness): G is C1 on Eε.

Equation G(ψ) = ν

cf [Mirebeau ’15]

→ τk = max{τ ∈ 2−N | ψkτ ∈ Eε and ‖G(ψkτ )− ν‖ ≤ (1− τ
2
)‖G(ψk)− ν‖}

Input: ψ0 ∈ RN s.t. ε := 1
2

mini min(G(ψ0)i, νi) > 0

Admissible domain: Eε := {ψ ∈ RN ; ∀i, ρ(Lagi(ψ) ≥ ε}

ρ(Lagi(ψ)) ≥ ε

→ ψk+1 := ψk − τkdk

Damped Newton Algorithm

where G(ψ) = (ρ(Lagi(ψ)))1≤i≤N

→ Define ψk,τ = ψk − τdk
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Damped Newton’s Algorithm

Loop: → Calculate dk s.t. DG(ψk)dk = G(ψk)− ν and
∑
i d
k
i = 0

Damped Newton algorithm: for solving G(ψ) = ν

Remark: The damped Newton’s algorithm converges globally provided that:

(Strict monotonicity): ∀ψ ∈ Eε, DG(ψ) is neg. definite on Eε ∩ {cst}⊥
(Smoothness): G is C1 on Eε.

Equation G(ψ) = ν

cf [Mirebeau ’15]

→ τk = max{τ ∈ 2−N | ψkτ ∈ Eε and ‖G(ψkτ )− ν‖ ≤ (1− τ
2
)‖G(ψk)− ν‖}

Input: ψ0 ∈ RN s.t. ε := 1
2

mini min(G(ψ0)i, νi) > 0

Admissible domain: Eε := {ψ ∈ RN ; ∀i, ρ(Lagi(ψ) ≥ ε}

ρ(Lagi(ψ)) ≥ ε

→ ψk+1 := ψk − τkdk

Damped Newton Algorithm

⇒ We have to show smoothness and strict monotonicity

where G(ψ) = (ρ(Lagi(ψ)))1≤i≤N

→ Define ψk,τ = ψk − τdk
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non-(Smoothness) of Kantorovich’s functional

Proposition: For ψ ∈ Eε, and assuming that ρ ∈ C0c (Rd) one has

(A) ∂Gi
∂ψj

(ψ) = 1
2‖yi−yj‖

∫
Lagij(ψ)

ρ(x) dx

we have Gi(ψ) = ρ(Lagi(ψ))

Lagij(ψ) := Lagi(ψ) ∩ Lagj(ψ)

(B) ∂Gi
∂ψi

(ψ) = −
∑
j 6=i

∂Gi
∂ψj

(ψ)

j 6= i

Quadratic cost : smoothness of G
c(x, y) := ‖x− y‖2
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non-(Smoothness) of Kantorovich’s functional

Proposition: For ψ ∈ Eε, and assuming that ρ ∈ C0c (Rd) one has

(A) ∂Gi
∂ψj

(ψ) = 1
2‖yi−yj‖

∫
Lagij(ψ)

ρ(x) dx

we have Gi(ψ) = ρ(Lagi(ψ))

Lagij(ψ) := Lagi(ψ) ∩ Lagj(ψ)

(B) ∂Gi
∂ψi

(ψ) = −
∑
j 6=i

∂Gi
∂ψj

(ψ)

j 6= i

Quadratic cost : smoothness of G
c(x, y) := ‖x− y‖2

Intuition of the proof:

yjyi

Gi(ψ)

yjyi

Gi(ψ+εej)−Gi(ψ)
ε

yjyi

∂Gi
∂ψj

(ψ)
ε→ 0
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non-(Smoothness) of Kantorovich’s functional

Proposition: For ψ ∈ Eε, and assuming that ρ ∈ C0c (Rd) one has

(A) ∂Gi
∂ψj

(ψ) = 1
2‖yi−yj‖
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Lagij(ψ)

ρ(x) dx

we have Gi(ψ) = ρ(Lagi(ψ))

Lagij(ψ) := Lagi(ψ) ∩ Lagj(ψ)

(B) ∂Gi
∂ψi

(ψ) = −
∑
j 6=i

∂Gi
∂ψj

(ψ)

j 6= i

When t varies, ∂Gi
∂ψj

(ψt) increases ...

Quadratic cost : smoothness of G
c(x, y) := ‖x− y‖2

Continuity of ∂Gi
∂ψj

(ψ)
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non-(Smoothness) of Kantorovich’s functional

and then suddenly vanishes.

Proposition: For ψ ∈ Eε, and assuming that ρ ∈ C0c (Rd) one has

(A) ∂Gi
∂ψj

(ψ) = 1
2‖yi−yj‖

∫
Lagij(ψ)

ρ(x) dx

we have Gi(ψ) = ρ(Lagi(ψ))

Lagij(ψ) := Lagi(ψ) ∩ Lagj(ψ)

(B) ∂Gi
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When t varies, ∂Gi
∂ψj
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Quadratic cost : smoothness of G
c(x, y) := ‖x− y‖2
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non-(Smoothness) of Kantorovich’s functional

and then suddenly vanishes.

 we require − ρ(Lagi(ψ)) > 0 at all times

Proposition: For ψ ∈ Eε, and assuming that ρ ∈ C0c (Rd) one has

(A) ∂Gi
∂ψj

(ψ) = 1
2‖yi−yj‖

∫
Lagij(ψ)

ρ(x) dx

we have Gi(ψ) = ρ(Lagi(ψ))

Lagij(ψ) := Lagi(ψ) ∩ Lagj(ψ)

(B) ∂Gi
∂ψi

(ψ) = −
∑
j 6=i

∂Gi
∂ψj

(ψ)

j 6= i

When t varies, ∂Gi
∂ψj

(ψt) increases ...

Quadratic cost : smoothness of G
c(x, y) := ‖x− y‖2

− or a genericity condition (three points not aligned)

Continuity of ∂Gi
∂ψj

(ψ)
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(Strong concavity) of Kantorovich’s functional

Recall: ∂Gi
∂ψj

(ψ) =
∫
Lagij(ψ)

ρ(x) d x
2‖yi−yj‖

∂Gi
∂ψi

(ψ) = −
∑
j 6=i

∂Gi
∂ψj

(ψ)

Lagij(ψ) := Lagi(ψ) ∩ Lagj(ψ)

Quadratic cost: strict monotonicity of G
we have Gi(ψ) = ρ(Lagi(ψ))
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(Strong concavity) of Kantorovich’s functional

Recall: ∂Gi
∂ψj

(ψ) =
∫
Lagij(ψ)

ρ(x) d x
2‖yi−yj‖

∂Gi
∂ψi

(ψ) = −
∑
j 6=i

∂Gi
∂ψj

(ψ)

(yi, yj) ∈ H ⇐⇒ Lij > 0⇐⇒ Lagij(ψ) ∩ {ρ > 0} 6= ∅.

Lagij(ψ) := Lagi(ψ) ∩ Lagj(ψ)

I Consider the matrix (Lij) := ∂Gi
∂ψj

(ψ) and the graph H:

Quadratic cost: strict monotonicity of G
we have Gi(ψ) = ρ(Lagi(ψ))



25 - 3

(Strong concavity) of Kantorovich’s functional

Recall: ∂Gi
∂ψj

(ψ) =
∫
Lagij(ψ)

ρ(x) d x
2‖yi−yj‖

∂Gi
∂ψi

(ψ) = −
∑
j 6=i

∂Gi
∂ψj

(ψ)

(yi, yj) ∈ H ⇐⇒ Lij > 0⇐⇒ Lagij(ψ) ∩ {ρ > 0} 6= ∅.

Lagij(ψ) := Lagi(ψ) ∩ Lagj(ψ)

I Consider the matrix (Lij) := ∂Gi
∂ψj

(ψ) and the graph H:

I If {ρ > 0} is connected and ψ ∈ Eε, then H is connected.

Quadratic cost: strict monotonicity of G
we have Gi(ψ) = ρ(Lagi(ψ))
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(Strong concavity) of Kantorovich’s functional

Recall: ∂Gi
∂ψj

(ψ) =
∫
Lagij(ψ)

ρ(x) d x
2‖yi−yj‖

∂Gi
∂ψi

(ψ) = −
∑
j 6=i

∂Gi
∂ψj

(ψ)

(yi, yj) ∈ H ⇐⇒ Lij > 0⇐⇒ Lagij(ψ) ∩ {ρ > 0} 6= ∅.

Lagij(ψ) := Lagi(ψ) ∩ Lagj(ψ)

I Consider the matrix (Lij) := ∂Gi
∂ψj

(ψ) and the graph H:

I If {ρ > 0} is connected and ψ ∈ Eε, then H is connected.

I Ker(L) = {cst} = R

(
1

.

.

.
1

)

Quadratic cost: strict monotonicity of G
we have Gi(ψ) = ρ(Lagi(ψ))
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(Strong concavity) of Kantorovich’s functional

Recall: ∂Gi
∂ψj

(ψ) =
∫
Lagij(ψ)

ρ(x) d x
2‖yi−yj‖

∂Gi
∂ψi

(ψ) = −
∑
j 6=i

∂Gi
∂ψj

(ψ)

(yi, yj) ∈ H ⇐⇒ Lij > 0⇐⇒ Lagij(ψ) ∩ {ρ > 0} 6= ∅.

Lagij(ψ) := Lagi(ψ) ∩ Lagj(ψ)

I Consider the matrix (Lij) := ∂Gi
∂ψj

(ψ) and the graph H:

I If {ρ > 0} is connected and ψ ∈ Eε, then H is connected.

I Ker(L) = {cst} = R

(
1

.

.

.
1

)

Proposition: Assume ρ ∈ C0c (Rd) and {ρ > 0} connected. Then,

∀ψ ∈ Eε, ∀v ∈ {cst}⊥ 〈DG(ψ)v|v〉 < 0

Quadratic cost: strict monotonicity of G
we have Gi(ψ) = ρ(Lagi(ψ))

 we require connectedness conditions on ρ
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Convergence in the quadratic case

Theorem: Let X be a (closed) convex bounded domain of Rd with

Y ⊂ Rd be a finite set, ρ of class C1 and {ρ > 0} connected.

Then, the damped Newton algorithm for SD-OT converges globally with
linear rate and locally with quadratic rate.

[Kitagawa, Mérigot, T., JEMS 2017 ]

‖G(ψk+1)− ν‖ ≤
(

1− τ∗

2

)2
‖G(ψk)− ν‖
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Convergence in the quadratic case

Theorem: Let X be a (closed) convex bounded domain of Rd with

Y ⊂ Rd be a finite set, ρ of class C1 and {ρ > 0} connected.

Then, the damped Newton algorithm for SD-OT converges globally with
linear rate and locally with quadratic rate.

[Kitagawa, Mérigot, T., JEMS 2017 ]

‖G(ψk+1)− ν‖ ≤
(

1− τ∗

2

)2
‖G(ψk)− ν‖

I Holds when X ⊂M Riemannian manifold, c ∈ C2 satistifes Twist, MTW.
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Convergence in the quadratic case

Theorem: Let X be a (closed) convex bounded domain of Rd with

Y ⊂ Rd be a finite set, ρ of class C1 and {ρ > 0} connected.

Then, the damped Newton algorithm for SD-OT converges globally with
linear rate and locally with quadratic rate.

[Kitagawa, Mérigot, T., JEMS 2017 ]

‖G(ψk+1)− ν‖ ≤
(

1− τ∗

2

)2
‖G(ψk)− ν‖

I Holds when X ⊂ Rd, c satistifes Twist.

I Holds when X ⊂M Riemannian manifold, c ∈ C2 satistifes Twist, MTW.

No convexity assumption but genericity conditions [Mérigot, T., 2020]
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Numerics: vanishing density

Quadratic cost: numerics
Exemple: ρ uniform on X = [0, 1]2; ν = 1

N
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Numerics: vanishing density

Quadratic cost: numerics
Exemple: ρ uniform on X = [0, 1]2; ν = 1

N

∑
i δyi diagramme de Laguerre

‖G(ψ0)− ν‖1
' 1.8

‖G(ψ1)− ν‖1
' 0.6
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Numerics: vanishing density

Quadratic cost: numerics
Exemple: ρ uniform on X = [0, 1]2; ν = 1

N

∑
i δyi diagramme de Laguerre

‖G(ψ0)− ν‖1
' 1.8

‖G(ψ3)− ν‖1
' 10−9

‖G(ψ1)− ν‖1
' 0.6
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Numerics: vanishing density

ρ = 1

ρ = 0

Source: PL density on X = [0, 3]2

Target: Uniform grid Y in [0, 1]2.

Quadratic cost: numerics
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Numerics: vanishing density

I The damped Newton’s algorithm converges even when ρ vanishes.

ρ = 1

ρ = 0

Source: PL density on X = [0, 3]2

Target: Uniform grid Y in [0, 1]2.

Quadratic cost: numerics

Lag(ψ0)

Lag(ψ8)
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Numerics: vanishing density

I The damped Newton’s algorithm converges even when ρ vanishes.

ρ = 1

ρ = 0

Source: PL density on X = [0, 3]2

Target: Uniform grid Y in [0, 1]2.

Quadratic cost: numerics

Lag(ψ0)

Lag(ψ8)

I N = 107 pb solved in 17 iterations.psdot (python); geogram
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Outline

I Case 1: mirror for point light source

I Case 2: mirror for collimated source light

I Semi-discrete optimal transport

I Non-imaging optics: Far-Field target

I Optimal transport

I Damped Newton algorithm

I Non-imaging optics: Near-Field target
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Mirror / Point light source: implementation

Computation of descent direction / time step

I Newton schemes:

Point source
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Mirror / Point light source: implementation

∫
Vi

dµ(x)

Computation of descent direction / time step

I Newton schemes:

∫
Vij

dµ(x)

I Evaluation of G and DG:

Point source

S2
Targ

et
lig

ht

Mirror R

0
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Mirror / Point light source: implementation

∫
Vi

dµ(x)

Computation of descent direction / time step

Main difficulty: computation of visibility cells Vi

I Newton schemes:

∫
Vij

dµ(x)

I Evaluation of G and DG:

Point source

S2
Targ

et
lig

ht

Mirror R

0
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Definition: Given P = {pi}1≤i≤N ⊆ Rd and (ωi)1≤i≤N ∈ RN

Powω
P (pi) := {x ∈ Rd; i = arg minj ‖x− pj‖2 + ωj}

Computation of Visibility (Laguerre) cells

Mirror / Point light source: implementation
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Definition: Given P = {pi}1≤i≤N ⊆ Rd and (ωi)1≤i≤N ∈ RN

Powω
P (pi) := {x ∈ Rd; i = arg minj ‖x− pj‖2 + ωj}

I Efficient computation of (Powω
P (pi))i using CGAL (d = 2, 3)

Computation of Visibility (Laguerre) cells

Mirror / Point light source: implementation
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Lemma: With ~ψ = log(~κ), pi := − yj
2κj

and ωi := −‖ yj2κj
‖2 − 1

κj
,

Definition: Given P = {pi}1≤i≤N ⊆ Rd and (ωi)1≤i≤N ∈ RN

Powω
P (pi) := {x ∈ Rd; i = arg minj ‖x− pj‖2 + ωj}

Vi(κ) = Powω
P (pi) ∩ S2

I Efficient computation of (Powω
P (pi))i using CGAL (d = 2, 3)

Computation of Visibility (Laguerre) cells

Mirror / Point light source: implementation
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Mirror / Point light source

ν =
∑N
i=1 νiδxi discretization of Cameraman (N = 4002).

µ = uniform measure on half-sphere S2
+

Point source

S2
Targ

et
lig

ht

Mirror R

0
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Mirror / Point light source

ν =
∑N
i=1 νiδxi discretization of Cameraman (N = 4002).

µ = uniform measure on half-sphere S2
+

Vi(ψ) = Pow(pi) ∩ S2

Point source

S2
Targ

et
lig

ht

Mirror R

0
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Numerics: vanishing density

Collimated source / Far Field Target
targeted image N = 400× 480

S2
Targ

et
lig

ht

Mirror R

Collimated source

R2 × {0}
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Numerics: vanishing density

Collimated source / Far Field Target
targeted image N = 400× 480

Vi(ψ) = Pow(pi) ∩ (R2 × {0})

S2
Targ

et
lig

ht

Mirror R

Collimated source

R2 × {0}

light source

Mirror R
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Numerics: vanishing density

Collimated source / Far Field Target
targeted image N = 400× 480

S2
Targ

et
lig

ht

Mirror R

Collimated source

R2 × {0}



34

Lenses

We solve 8 optical problems with one program

 Vi(ψ) = Pow(pi) ∩X where X = S2,R2 × {0}
 Automatic differentiation
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Image rendered with LuxRender

mesh of the mirror

mirror

Singularity

Collimated source / Far Field Target
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Outline

I Case 1: mirror for point light source

I Case 2: mirror for collimated light source

I Semi-discrete optimal transport

I Non-imaging optics: Far-Field target

I Optimal transport

I Damped Newton algorithm

I Non-imaging optics: Near-Field target
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Problem with the far-field assumption

Putting three copies of the same lens shifted by h...

h

Problem with far-field assumption
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Problem with the far-field assumption

Putting three copies of the same lens shifted by h...

... produces a superposition of images shifted by h.

h yi ∈ S2

yi ∈ S2

yi ∈ S2

Problem with far-field assumption
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Problem with the far-field assumption

Putting three copies of the same lens shifted by h...

... produces a superposition of images shifted by h.

One wants to produce images at finite distance −→ near-field problem.

h yi ∈ S2

yi ∈ S2

yi ∈ S2

Problem with far-field assumption
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Approximating near-field using far-field

NF pb: Build a component R sending light towards z1, . . . , zN ∈ {D} × R2

(instead of y1, . . . , yN ∈ S2))

Iterated FF problem
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Approximating near-field using far-field

We approximate solutions to the NF problem using a sequence of FF pb.

NF pb: Build a component R sending light towards z1, . . . , zN ∈ {D} × R2

Step 0: Solve far-field problem with target y
(0)
i = zi/‖zi‖

{−R} × R2 {0} × R2 {D} × R2

Source Lens Target

zi

0

y
(0)
i

Iterated FF problem
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Approximating near-field using far-field

We approximate solutions to the NF problem using a sequence of FF pb.

NF pb: Build a component R sending light towards z1, . . . , zN ∈ {D} × R2

Step 0: Solve far-field problem with target y
(0)
i = zi/‖zi‖

{−R} × R2 {0} × R2 {D} × R2

Source Lens Target

zi

0

y
(0)
i

b
(0)
i

R(0) first estimation of the lens

b
(0)
i = barycenter of ith facet

Iterated FF problem
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Approximating near-field using far-field

We approximate solutions to the NF problem using a sequence of FF pb.

NF pb: Build a component R sending light towards z1, . . . , zN ∈ {D} × R2

Step 0: Solve far-field problem with target y
(0)
i = zi/‖zi‖

{−R} × R2 {0} × R2 {D} × R2

Source Lens Target

zi

0

Step 1: Solve far-field problem with target y
(1)
i = (zi − b(0)i )/‖zi − b(0)i ‖

y
(0)
i

b
(0)
i

y
(1)
i

R(0) first estimation of the lens

b
(0)
i = barycenter of ith facet

Iterated FF problem
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Approximating near-field using far-field

We approximate solutions to the NF problem using a sequence of FF pb.

NF pb: Build a component R sending light towards z1, . . . , zN ∈ {D} × R2

Step 0: Solve far-field problem with target y
(0)
i = zi/‖zi‖

{−R} × R2 {0} × R2 {D} × R2

Source Lens Target

zi

0

Step 1: Solve far-field problem with target y
(1)
i = (zi − b(0)i )/‖zi − b(0)i ‖

y
(0)
i

b
(0)
i

y
(1)
i

Step k+1: Solve far-field problem with target y
(k+1)
i = (zi − b(k)i )/‖zi − b(k)i ‖, ...

Efficient heuristic to solve NF problem using a FF solver...

Iterated FF problem
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Convergence of the algorithm

Target 1st iteration 2nd iteration 5th iteration
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Pillows
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Pillows
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Pillows
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Numerical result

red light

green light

blue light

I We solve one near-field problem per color channel.

I Near-field assumption needs to be taken into account for
the image to be perfectly superimposed on the screen.

screen

Color channels
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Numerical result

Color channels
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Example 3: physical prototype

Physical prototypes
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Example 3: physical prototype
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Example 3: physical prototype

Physical prototypes
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Conclusion

We solved 4 inverse problems arising in nonimaging optics
using semi-discrete approach and optimal transport

I Each problem is a Monge-Ampère equation

I For far-field target, OT problem on R2 or S2  Newton algorithm

I Iterative procedure for real-life light target
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Conclusion
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using semi-discrete approach and optimal transport

 Generalization to generated jacobian equations (application to optics,

I Each problem is a Monge-Ampère equation

I For far-field target, OT problem on R2 or S2  Newton algorithm

near field target) : Anatole Gallouet’s talk

 Extended light (Jean-Baptiste Keck post-doc)

I Iterative procedure for real-life light target

Ongoing work

 Metasurfaces (with Cristian Gutierrez)
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Conclusion

We solved 4 inverse problems arising in nonimaging optics
using semi-discrete approach and optimal transport

Thank you!

 Generalization to generated jacobian equations (application to optics,

I Each problem is a Monge-Ampère equation

I For far-field target, OT problem on R2 or S2  Newton algorithm

near field target) : Anatole Gallouet’s talk

 Extended light (Jean-Baptiste Keck post-doc)

I Iterative procedure for real-life light target

Ongoing work

 Metasurfaces (with Cristian Gutierrez)


