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Nonimaging optics: motivations

Goal: design components that transfer a prescribed light source
to a prescribed target illumination




Nonimaging optics: motivations

Goal: design components that transfer a prescribed light source
to a prescribed target illumination

Motivations / applications

» Car beam design

» Public lighting: stadium, streets,...

5.9 » Reduction of light pollution



Imaging optics: mirror case

We are given a one-to-one map f: X — Y.
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Imaging optics: mirror case

We are given a one-to-one map f: X — Y.

Goal: Find a surface S such that the reflection of X onto Y preserves f.
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Non-imaging optics: mirror case

Input: Light source with intensity u No one-to-one map given

arget illumination with intensity v




Non-imaging optics: mirror case

Input: Light source with intensity u No one-to-one map given

arget illumination with intensity v

Goal: Find a surface S such that reflects 11 to the v by Snell's law
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Four inverse problems
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Case 1: mirror for point light source

Case 2: mirror for collimated light source

Optimal transport

Semi-discrete optimal transport
Damped Newton algorithm

Non-imaging optics: Far-Field target
Non-imaging optics: Near-Field target
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Mirror / Point light source

Punctual light at origin o, 1+ measure on S?

SQ
> Prescribed far-field: v on S%_

Goal: Find a surface R which sends (S2, i) to
(Seo, ) under reflection by Snell's law.
2 » R is parameterized by x € S3 — zu(x)

where u : S2 — R™ radial distance

» Snell’s law
Ty:x€S5—y=1z—2{(x|ny)n,

Brenier formulation Tiu =v
I.e. for every borelian B

u(T~1(B)) = v(B)
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Mirror / Point light source

Brenier formulation Tiu =v
I.e. for every borelian B

u(T~1(B)) = v(B)

7-7

Punctual light at origin o, 1+ measure on S?
Prescribed far-field: v on S2_

Goal: Find a surface R which sends (S2, i) to

(Seo, ) under reflection by Snell's law.

» R is parameterized by x € S3 — zu(x)

where u : S2 — R™ radial distance

» Snell’s law
Ty:x€S5—y=1z—2{(x|ny)n,

Change of variable

If w(z) = f(x)dx and v(y) = g(y)dy
9(T'(x)) det(DT(z)) = f(x)




Mirror / Point light source

Punctual light at origin o, 1+ measure on S?

SQ
> Prescribed far-field: v on S%_

Goal: Find a surface R which sends (S2, i) to
(Seo, ) under reflection by Snell's law.
2 » R is parameterized by x € S3 — zu(x)

where u : S2 — R™ radial distance

» Snell’s law
Ty:x€S5—y=1z—2{(x|ny)n,

Monge-Ampére equation Find u:SZ — RT s.t.

g9(Tu(z)) det(DTy(z)) = f()
L(z) = » — (@[nu(z))nu(z)
Ny ($) _ Vu(zx)—u(x)x

V IVu(z) |2 4-u(z)?

7 _ g Wwith boundary and other conditions




Mirror / Point light source

Punctual light at origin o, 1+ measure on S?

SQ
> Prescribed far-field: v on S%_

Goal: Find a surface R which sends (S2, i) to
(Seo, ) under reflection by Snell's law.
2 » R is parameterized by x € S3 — zu(x)

where u : S2 — R™ radial distance

» Snell’s law
Ty:x€S5—y=1z—2{(x|ny)n,

Monge-Ampére equation Find u:SZ — RT s.t.

g9(Tu(z)) det(DTy(z)) = f() » Existence of weak solutions
Tu(z) = z — (z[nu(z))nu(z) Cafforelli & Oliker 04
ny ($) _ Vu(z)—u(xz)x

VIIVu(z) |2 +u(z)? » Existence of solutions, regularity

7 9 Wlth boundary and Other COnditionS Wang 96, Guan & Wang 98, Caffarelli Gutierrez & Huang '08
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o2 Punctual light at origin o, 1+ measure on S?
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Mirror / Point light source: semi-discrete

Punctual light at origin o, 1+ measure on S?

SQ
> Prescribed far-field: v = v16,, on S2,

y; R : paraboloid of direction y; and focal O

8 -3



Mirror / Point light source: semi-discrete

Y1
Punctual light at origin o, © measure on S?

2
SOO D . . 2
rescribed far-field: v = > . 1v;0,, on 8,

Y2

Ys



Mirror / Point light source: semi-discrete

Punctual light at origin o, © measure on S?

Prescribed far-field: v =>".1;4,, on S,

P;(k;) = solid paraboloid of revolution with focal o,

direction y; and focal distance k;
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P;(k;) = solid paraboloid of revolution with focal o,

direction y; and focal distance k;

Decomposition of S2: V;(R) = g2 (R(R) N OP;(k;))

0]

= directions that are reflected towards y;.
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Mirror / Point light source: semi-discrete

Punctual light at origin o, © measure on S?

(ks) Prescribed far-field: v =" v;0,, on SZ

P;(k;) = solid paraboloid of revolution with focal o,

direction y; and focal distance k;

R(R) = 0 (N, P;(ki))

Decomposition of S2: V;(R) = g2 (R(R) N OP;(k;))

0]

= directions that are reflected towards y;.

Problem (FF): Find x1,...,xx such that for every i, u(V;(R)) = v;.

8-7



Mirror / Point light source: Optimal Transport

Lemma: With c¢(x,y) = —log(1 — (x|y)), and v; := log(k;),
Vi(R) = {z €S, c(z,y:) +¥i < c(z,y;) +; Vi}

Caffarelli-Oliker '94
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Proof: OP;(k;) is parameterized in radial coordinates by
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Mirror / Point light source: Optimal Transport

Lemma: With c¢(x,y) = —log(1 — (x|y)), and v; := log(k;),
Vi(R) = {z €S, c(z,y:) +¥i < c(z,y;) +; Vi}

Caffarelli-Oliker '94

Proof: OP;(k;) is parameterized in radial coordinates by
Pi T & Sg = 1=

EIm,

K < k4
1—(x|ly:;) — 1—(z|y;)

< lOg(liz) — lOg(l — <x‘yz>) < ...

= ; + c(z,y;) < Y; + c(z,y;)

re V;(R) =
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Mirror / Point light source: Optimal Transport

Lemma: With c¢(x,y) = —log(1 — (x|y)), and v; := log(k;),
Vi(R) = {z €S, c(z,y:) +¥i < c(z,y;) +; Vi}

Caffarelli-Oliker '94

Proof: OP;(k;) is parameterized in radial coordinates by

. 2 K

S Vz(/%) — 1—(l¥|y7;> < 1—(z|y;)

< lOg(liz) — lOg(l — <x‘yz>) < ...

— VP + c(z,y;) <+ c(z,y,)

~~ An optimal transport problem on S?  wang s

Problem (FF): Find k1,...,xyN such that for every ¢, u(V;(R)) = v;.
9-6




10

VvV Vv

\ 4

vy

vV Yy

Outline

Case 1: mirror for point light source
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Mirror / Collimated light source

Collimated light ;& measure on Q C R? x {0}

Mirror K . .
Prescribed far-field: v on S§?

Goal: Find a surface R which sends (€2, i) to
(S%, v) under reflection by Snell’s law.

Collimated source
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Mirror / Collimated light source

Collimated light ;& measure on Q C R? x {0}

Mirror K .
Prescribed far-field: v on S?

Goal: Find a surface R which sends (€2, i) to
(S%, v) under reflection by Snell’s law.

» R param. by x € Q +— (z,u(x))
where u : {2 — R height function

Collimated source » Snell's law: the ray e, coming from x
is reflected in direction F'(Vu(x)).
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Mirror / Collimated light source

Collimated light ;& measure on Q C R? x {0}

Mirror K . .
Prescribed far-field: v on S§?

Goal: Find a surface R which sends (€2, i) to
(S%, v) under reflection by Snell’s law.

» R param. by x € Q +— (z,u(x))

| v where u : { — R height function

Collimated source » Snell's law: the ray e, coming from x
is reflected in direction F'(Vu(x)).

Brenier formulation (FoVu)yu =v
S VA u((FoVu)~1(A) =v(A)
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Mirror / Collimated light source

Collimated light ;& measure on Q C R? x {0}

Mirror K .
Prescribed far-field: v on S?

Goal: Find a surface R which sends (€2, i) to
(S%, v) under reflection by Snell’s law.

» R param. by x € Q +— (z,u(x))

| v where u : { — R height function

Collimated source » Snell's law: the ray e, coming from x
is reflected in direction F'(Vu(x)).

Brenier formulation (FoVu)yu =v
& VA u((F o Vu)~1(4)) = v(4)
& VB p((Vu)™(B)) = v(B) with B=F~1(A) C R?
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Mirror / Collimated light source

Collimated light ;& measure on Q C R? x {0}

Mirror K . .
Prescribed far-field: v on S§?

Goal: Find a surface R which sends (€2, i) to
(S%, v) under reflection by Snell’s law.

» R param. by x € Q — (z,u(x))

| v where u : { — R height function

Collimated source » Snell's law: the ray e, coming from x
is reflected in direction F'(Vu(x)).

Brenier formulation (FoVu)yu =v
& VA u((F o Vu)~1(4)) = v(4)
& VB p((Vu)™(B)) = v(B) with B=F~1(A) C R?

. %det(vzu(x))g(Vu(a:)) = f(z)if p(x) = f(x)dxr and v(x) = g(x)dx



Mirror / Collimated light source

Collimated light ;& measure on Q C R? x {0}

Mirror K . .
Prescribed far-field: v on S§?

Goal: Find a surface R which sends (€2, i) to
(S%, v) under reflection by Snell’s law.

» R param. by x € Q +— (z,u(x))

| v 0 where u : { — R height function

Collimated source » Snell's law: the ray e, coming from x
is reflected in direction F'(Vu(x)).

Monge-Ampére equation in R?

Find u : Q — R? such that det(V?u(x))g(Vu(x)) = f(z)

with boundary conditions

11-6



Mirror / Collimated light source: semi-discrete

Collimated light ;& measure on Q C R? x {0}
Prescribed far-field: v =>".1;4,, on S?

mirror S

B

(z, (x|pi) — i)

light source

N
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Collimated light ;& measure on Q C R? x {0}
Prescribed far-field: v =>".1;4,, on S?

mirror S

B

(z, (x|pi) — i)
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N

L4
We choose a mirror parametrized by V(D) /\é\é\&
¢ \
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Mirror / Collimated light source: semi-discrete

Collimated light ;& measure on Q C R? x {0}
Prescribed far-field: v =>".1;4,, on S?

mirror S

B

light source

L4
We choose a mirror parametrized by Vi) /\\é\é\&
x € (a:,rr%éz@\p?,} — ;) ' -

min concave
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Mirror / Collimated light source: semi-discrete

Collimated light ;& measure on Q C R? x {0}
Prescribed far-field: v =>".1;4,, on S?

mirror S

B

(z, (x|pi) — i)

light source

\ :
Yi S/

L4
We choose a mirror parametrized by V(D) /\é\é\&
¢ \

x € ) — (2, max;(z|p;) — Vi) S Is convex @0@&
K2

Problem (FF): Find v, ...,%N such that for every 1, w(Vi(¥)) = ;.

amount of light reflected in direction y;.

12 -4



Mirror / Collimated source: Optimal Transport

mirror S

X

light source
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Mirror { Collimated source: Optimal Transport

mirror S

X

light source

~» Optimal transport problem in R?

—

Problem (FF): Find 41, ...,%N such that for every ¢, u(V;(v)) = v;.
13 -2
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Case 2: mirror for collimated light source

Optimal transport

Semi-discrete optimal transport
Damped Newton algorithm

Non-imaging optics: Far-Field target
Non-imaging optics: Near-Field target



Monge problem (1781)

How to optimally move sand 7
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Monge problem (1781)

How to optimally move sand 7

Let c: X XY — IR be a cost function
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Monge problem (1781)

How to optimally move sand 7

T?7?

p S

X,

let ¢c: X XY — R be a cost function e.g. c(z,y) = |z — yl*

Monge problem. Find a map 7' : X — Y such that

» T preserves the mass, ie. v(A) = u(T~1(A))

» 1" minimizes the total cost

min [, c(x, T(z))dp(z)
5Th% minimizer does not always exist; Constraint not linear



Monge problem (1781)

How to optimally move sand 7

Let c: X XY — IR be a cost function

Kantorovitch relaxation — 1940’s
Minimise [ ¢(z,y)dn(z,y)
where 7 Is a transport plan, i.e

7 1s a probability measure on X x Y
(A X Y) = p(A)

o XX B) =u(B)




Numerical optimal transport

Discrete source and target

@i o Vj | |
B linear programming
® . ... e 0
' ' Bertsekas' auction algorithm
© o g O Sinkhorn /IPFP
[
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Source and target with density (PDE):
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Numerical optimal transport

Discrete source and target

@i o Vj | |
......................................... linear programming
® . .. el 0
' ' Bertsekas' auction algorithm
o o g O Sinkhorn /IPFP

Source and target with density (PDE):

Benamou-Brenier formulation

Stencil methods for Monge Ampére equations

Source with density, discrete target:

Coordinate-wise increment
Oliker-Prussner '89 Caffarelli-Kochengin-Oliker '97

Kitagawa '12

Newton and quasi-Newton methods

Aurenhammer, Hoffmann, Aronov '98
Mérigot '11, Levy'lb, Kitagawa-Mérigot-T.'17, etc.

16 - 3
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Case 2: mirror for collimated source light

Optimal transport

Semi-discrete optimal transport
Damped Newton algorithm

Non-imaging optics: Far-Field target
Non-imaging optics: Near-Field target



Semi-discrete optimal transport

u(x) = p(x)dx probability measure on X
v =) .0, prob. measure on finite Y = {y1, -+ ,yn}

c: X XY — R cost function

X
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Semi-discrete optimal transport
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Semi-discrete optimal transport

u(x) = p(x)dx probability measure on X
v =) .0, prob. measure on finite Y = {y1, -+ ,yn}

c: X XY — R cost function

Transport map: 7 : X — Y st. Vi, (T '({y;})) = v (i.e. Tpp =v)

'Monge problem: Find a transport map 7" : X — Y that minimizes
[y el T(w)) d o)

18 - 3



Semi-discrete optimal transport
p: X — R density of population

Y = location of bakeries

c(x,y;) = ||z — yi|?
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Semi-discrete optimal transport
p: X — R density of population

Y = location of bakeries

c(x,y;) = ||z — yi|?

» If the price of bread is uniform, people go the closest bakery:

Vor(y;) =1z € X;Vj, c(z,y;) < c(x,y;)}
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Semi-discrete optimal transport
p: X — R density of population

Y = location of bakeries

c(x,y;) = ||z — yi|?

» |If prices are given by 91, - , 9N, people make a compromise:

Lemma: The map 7 : X — Y is an optimal transport map between

p and v, where v, ; = p(Lag,(v)) is the measure of Lag,(v))

For other costs ¢, (Twist): Vz, the map y — V.c(x,y) is injective

Solving OT between p and v <= Finding ¢ s.t. p(Lag;(v)) = v; Vi
19 - 6



Kantorovitch duality

Theorem: Finding an optimal transport between p and v = ) . v;0,,

<= maximizing the concave function ® : RV — R

() := 2, fLagi(w)[C(% yi) + sl dp(x) — 3 Yivs

Aurenhammer, Hoffman, Aronov '98
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Kantorovitch duality

Theorem: Finding an optimal transport between p and v = ) . v;0,,

<= maximizing the concave function ® : RV — R

() =325 Jrag, (o €(@: 4i) + Y] d p(@) = 32, divi

Aurenhammer, Hoffman, Aronov '98

» Recast of Kantorovich duality.

> VO(¢) = (p(Lag;(¢)) — v:)1<i<n. Hence,
vq) — O <:>\V/Z, /O(Lagz (w)) — Vj. (discrete Monge-Ampere equation)

» Existing numerical methods: coordinate-wise increment with minimum

. . 3 .
step, with complexity O(N7 log(NN)), € = precision.  [Olike—Prussner '99]
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Kantorovitch duality

Theorem: Finding an optimal transport between p and v = ) . v;0,,

<= maximizing the concave function ® : RV — R

() =325 Jrag, (o €(@: 4i) + Y] d p(@) = 32, divi

Aurenhammer, Hoffman, Aronov '98

» Recast of Kantorovich duality.

> VO(¢) = (p(Lag;(¢)) — v:)1<i<n. Hence,
vq) — O <:>\V/Z, /O(Lagz (w)) — Vj. (discrete Monge-Ampere equation)

» Existing numerical methoczlgs: coordinate-wise increment with minimum
step, with complexity O(NT log(NN)), € = precision.  [Olike—Prussner '99]

» Quasi Newton methods for ¢(x,y) = || — y||* on R?/R> S* No analysis

[Mérigot. '11] [Lévy '14] [de Goes et al '12] [Machado, Mérigot, Thibert "16]

» Newton method in R?, R?, when 1 supported on a triangulation.

20 - 5
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Outline

Case 1: mirror for point light source

Case 2: mirror for collimated source light

Optimal transport

Semi-discrete optimal transport
Damped Newton algorithm

Non-imaging optics: Far-Field target
Non-imaging optics: Near-Field target
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Newton Algorithm

Equation p(Lag,(v)) = v; for all ¢

1




Newton Algorithm

Equation p(Lag,(v)) = v; for all ¢

We define G : RY — RY by G(¢) = (p(Lag;(¥)))1<i<n

Remark: G is invariant

22 - 2

Equation G(v) = v

oy addition of a vector \(1,---,1).




Newton Algorithm

Equation p(Lag,(v)) = v; for all ¢

Equation G(v) = v

Remark: G is invariant by addition of a vector \(1,---,1).

Newton algorithm: for solving G(v¢) = v \

Elnput: ¢’ € RY sit. e := 5 min; min(G(¢°);, 1) > 0
ELoop: — Calculate d” s.t. DG(¢*)d"* = G(¥*) —v and

N wk—kl P — wk . dk
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Newton Algorithm

Equation p(Lag,(v)) = v; for all ¢

X

We define G : RY — RY by G(¢) = (p(Lag;(¥)))1<i<n
Equation G(v) = v

L

Remark: G is invariant by addition of a vector \(1,---,1).

Newton algorithm: for solving G(v¢) = v \

Elnput: wo c RY s.it. e := %min,,; min(G(wo)%V@') >0

ELoop: — Calculate d° s.t. DG(¢")d" = G(¥*) —v and

N wk—kl P — wk . dk

Local convergence : if 1V is close to a solution ©*, then it converges.
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Newton Algorithm

Equation p(Lag,(v)) = v; for all ¢

X

We define G : RY — RY by G(¢) = (p(Lag;(¥)))1<i<n
Equation G(v) = v

L

Remark: G is invariant by addition of a vector \(1,---,1).

Newton algorithm: for solving G(v¢) = v \

Elnput: wo c RY s.it. e := %min,,; miH(G(wo)%V’i) >0

ELoop: — Calculate d° s.t. DG(¢")d" = G(¥*) —v and

N wk—kl P — wk . dk

Local convergence : if 1V is close to a solution ©*, then it converges.

How about global convergence 7

Remark: If Lag, (1)) = 0 then DG;(3)) = 0 locally and d* not unique.

& We want to enforce Lag, (1)) # 0.



Damped Newton Algorithm

Equation G(¢)) = v where G(¢) = (p(Lag;(¥)))1<i<n
Admissible domain: F. := {¢) € R";Vi, p(Lag, (1)) > €}

23 -1




Damped Newton Algorithm

Equation G(v) =v  where G(¢) = (p(Lag;(¥)))1<i<n
Admissible domain: F. := {¢) € R";Vi, p(Lag, (1)) > €}

Damped Newton algorithm: for solving G(v)) =

Input P € RY sit. ¢ —%mmzmm( ( s, u,,)

: Loop: — Calculate d* s.t. DG(¢*)d* = G(¢*) — v and 32, dF = 0
: — Define ¢*7™ = ¢* — 7d"

— rF = = max{7T € 2N | ) and ukT — v <( %)‘|G(¢k) Dﬁ

— Ypy1 1= P — 15 d"
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Damped Newton Algorithm

Equation G(¢)) =v  where G(v) = (p(Lag;(v)))1<i<n
Admissible domain: F. := {¢) € R";Vi, p(Lag, (1)) > €}

Damped Newton algorithm: for solving G(v)) =

Input Y € RY s.it. €:= % min, mm( ( N, vi) >
: Loop: — Calculate d* s.t. DG(¢*)d* = G(¢*) — v and 32, dF = 0
: — Define ¢*7™ = ¢* — 7d"

- 7 = max{r € 27 |G € B and ([G(0™) — v < (1 - PIGEH) —/ﬁ

— Y1 = Y —1°d"

Remark: The damped Newton's algorithm converges globally provided that:
(Smoothness): G is C' on F..
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Damped Newton Algorithm

Equation G(¢)) =v  where G(v) = (p(Lag;(v)))1<i<n
Admissible domain: F. := {¢) € R";Vi, p(Lag, (1)) > €}

Damped Newton algorithm: for solving G(v)) =

Input Y € RY s.it. €:= % min, mm( ( N, vi) >
: Loop: — Calculate d* s.t. DG(¢*)d* = G(¢*) — v and 32, dF = 0
: — Define ¢*7™ = ¢* — 7d"

- 7 = max{r € 27 |G € B and ([G(0™) — v < (1 - PIGEH) —/ﬁ

— Y1 = Y —1°d"

Remark: The damped Newton's algorithm converges globally provided that:
(Smoothness): G is C' on F..
(Strict monotonicity): Vi € ., DG(3) is neg. definite on E. N {cst}+

cf [Mirebeau '15]
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Damped Newton Algorithm

Equation G(¢)) =v  where G(v) = (p(Lag;(v)))1<i<n
Admissible domain: F. := {¢) € R";Vi, p(Lag, (1)) > €}

Damped Newton algorithm: for solving G(v)) =

Input Y € RY s.it. €:= % min, mm( ( N, vi) >
: Loop: — Calculate d* s.t. DG(¢*)d* = G(¢*) — v and 32, dF = 0
: — Define ¢*7™ = ¢* — 7d"

- 7 = max{r € 27 |G € B and ([G(0™) — v < (1 - PIGEH) —/ﬁ

— Y1 = Y —1°d"

Remark: The damped Newton's algorithm converges globally provided that:
(Smoothness): G is C' on F..
(Strict monotonicity): Vi € ., DG(3) is neg. definite on E. N {cst}+

cf [Mirebeau '15]
23 _ § = We have to show smoothness and strict monotonicity



Quadratic cost : smoothness of G

we have G; () = p(Lag;(¥))  c(z,y) := ||z — y|?

Proposition: For ¢ € E_, and assuming that p € C?(R%) one has

(A)

24 - 1

9+ () =

Jj 71

1

Tdtag, ) P@) de(B) G5t (¥) = =32, 55

2||yi —v.

Lagij (¥) := Lag,(4) N Lagj (¥)
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Quadratic cost : smoothness of G
we have G;(v) = p(Lag,(¥)) c(z,y) = ||z — y||?

Proposition: For ¢ € E_, and assuming that p € C?(R%) one has

(A) g—g(w) = 2||y7;1—yj|| JrLang) p(z)dz(B) g—%(w) - = Zj;éz‘ g—gj(lb)
J # i

Lagij (¥) := Lag,(4) N Lagj (¥)

Intuition of the proof:

S
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Quadratic cost : smoothness of G
we have G;(v) = p(Lag,(¥)) c(z,y) = ||z — y||?

Proposition: For ¢ € E_, and assuming that p € C?(R%) one has

(A) g—%(w) = 2||y7;1—yj|| JrLagM(a) p(z) dz(B) g—%(w) = = Zj;éz‘ g—gj(lb)

JFe
Lagij (¢) := Lag,(y) N Lagj (¥)
. . Continuity of gig ()
When ¢ varies, g—g’%(wt) increases ...
o ® o !
® o
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Quadratic cost : smoothness of G

we have G; () = p(Lag;(¥))  c(z,y) := ||z — y|?

Proposition: For ¢ € E_, and assuming that p € C?(R%) one has

0G;

(A) 55 () = oy

Tttag P& dz(B) 55+

Jj 71

24 - 4

Continuity of

When t varies,

0G;
oY

(%)

0G;
0

- Zj;éz’ g—gj(¢)

Lagij (¥) := Lag,(4) N Lagj (¥)

(¥)

(1¢) increases ...



Quadratic cost : smoothness of G

we have G; (770) — ,O(Lagz‘ (w))

c(z,y) = llz —y|*

Proposition: For ¢ € E_, and assuming that p € C?(R%) one has

(A) g—%(w) = 2||y7;1—yj|| JrLang) p(z) dz(B) g—%(w) = = Zj;éz‘ g—gj(lb)

Jj 71

ST
PN

24 - 5

Lagij (¥) := Lag,(4) N Lagj (¥)

Continuity of gig (1)

0G;
0

and then suddenly vanishes.

When t varies, (1¢) increases ...



Quadratic cost : smoothness of G
we have G;(v) = p(Lag,(¥)) c(z,y) = ||z — y||?

Proposition: For ¢ € E_, and assuming that p € C?(R%) one has

(A) g—ij(w) — 2||yi1_yj|| JrLagM(a) p(z)dz(B) gif (%) = — Zj;éz' gij ()
)

Lagz’j (¥) := Lag,;(¢) N Lagj (¥)

\/ Continuity of gig ()
0G;

0P
~~ we require — p(Lag, (1)) > 0 at all times

When t varies, (1¢) increases ...

and then suddenly vanishes.

24 - 6 — or a genericity condition (three points not aligned)



Quadratic cost: strict monotonicity of G

we have G;(v) = p(Lag,(v))

r p(x)dx oG, _ 0G;
Lag, ; () [2[lys —y;]] 6—%(¢) Z#i O

Lagij (¢) := Lag,(v) N Lagj (¥)

Recall: ggj (1) =

.:

25 -1
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Quadratic cost: strict monotonicity of G

we have G;(v) = p(Lag,(v))

. 0G; o (z)d= 0G; 0G;
Recall: 575 (V) = Jrag,, () BTvi—wi1 99 W) = = 251 5, V)

Lagij (¢) := Lag,(v) N Lagj (¥)

0

» Consider the matrix (L;;) := gG? (¢) and the graph H:

(yi,y5) € H <= Lij > 0<= Lag,;;(v)) N {p > 0} # 0.




Quadratic cost: strict monotonicity of G

we have G;(v) = p(Lag,(v))

. 0G; _ (r)dx 0G; eler
Recall: (%) = JrLagij (1) gﬁyi_yjn a—%(%b) — Zj;éi a—%(w)

Lagij (¢) := Lag,(v) N Lagj (¥)

0

» Consider the matrix (L;;) := ggj (¢) and the graph H:

(yi,y5) € H <= Lij > 0<= Lag,;;(v)) N {p > 0} # 0.

» If {p > 0} is connected and ¢ € E., then H is connected




Quadratic cost: strict monotonicity of G

we have G;(v) = p(Lag,(v))

. 0G; _ (r)dx 0G; eler
Recall: (%) = JrLagij (1) gﬁyi_yjn a—%(%b) — Zj;éi a—%(w)

Lagij (¢) := Lag,(v) N Lagj (¥)

0

» Consider the matrix (L;;) := ggj (¢) and the graph H:

(yi,y5) € H <= Lij > 0<= Lag,;;(v)) N {p > 0} # 0.

p—

» If {p > 0} is connected and ¢ € E., then H is connected

> Ker(L) = {cst} R( )

1




Quadratic cost: strict monotonicity of G

we have G;(v) = p(Lag,(v))

. 0G; _ (z)dx 0G,; _ 0G;
Recall: 554 (v) = e Bl vl v () = = 2z 5y (V)
Lagij (¢) := Lag,;(¢) N Lagj (¥)

» Consider the matrix (L;;) := ggj (¢) and the graph H:

(yi,y5) € H <= Lij > 0<= Lag,;;(v)) N {p > 0} # 0.

L —

» If {p > 0} is connected and ¢ € E., then H is connected

> Ker(L) = {cst} R( )

1

Proposition: Assume p € C2(R%) and {p > 0} connected. Then,
Vip € B, Yo € {est}+ (DG(y)v|v) < 0

~» We require connectedness conditions on p

25 -5



Convergence in the quadratic case

Theorem: Let X be a (closed) convex bounded domain of R? with
Y C R? be a finite set, p of class C! and {p > 0} connected.

hen, the damped Newton algorithm for SD-OT converges globally with
Inear rate and locally with quadratic rate.

%

2
|G —vl < (1- %) 1GW*) -l
[Kitagawa, Mérigot, T., JEMS 2017 |
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Convergence in the quadratic case

Theorem: Let X be a (closed) convex bounded domain of R? with
Y C R? be a finite set, p of class C! and {p > 0} connected.

hen, the damped Newton algorithm for SD-O
Inear rate and locally with quadratic rate.

converges globally with

N 2
|G —vl < (1- %) 1GW*) -l
[Kitagawa, Mérigot, T., JEMS 2017 |

» Holds when X C M Riemannian manifold, ¢ € C? satistifes Twist, MTW.
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Convergence in the quadratic case

Theorem: Let X be a (closed) convex bounded domain of R? with
Y C R? be a finite set, p of class C! and {p > 0} connected.

hen, the damped Newton algorithm for SD-O
Inear rate and locally with quadratic rate.

converges globally with

N 2
|G —vl < (1- %) 1GW*) -l
[Kitagawa, Mérigot, T., JEMS 2017 |

» Holds when X C M Riemannian manifold, ¢ € C? satistifes Twist, MTW.

» Holds when X C R¢ ¢ satistifes Twist.

No convexity assumption but genericity conditions [Mérigot, T., 2020]
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Quadratic cost: numerics

Exemple: p uniform on X = [0,1]%; v =

27 -1
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Quadratic cost: numerics

Exemple: p uniform on X = [0,1]% v = & 2 0y, diagramme de Laguerre

IG (7)) — vl
~ 1.8
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Quadratic cost: numerics

Exemple: p uniform on X = [0,1]%; v =

27 - 3

diagramme de Laguerre

IG (7)) — vl
~ 1.8



Quadratic cost: numerics

Exemple: p uniform on X = [0,1]%; v =

27 - 4

diagramme de Laguerre



Quadratic cost: numerics

Source: PL density on X = [0, 3]?
Target: Uniform grid ¥ in [0, 1]°.
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Quadratic cost: numerics

o
Faria

Source: PL density on X = [0, 3]?
Target: Uniform grid Y in [0, 1]°.

» The damped Newton's algorithm converges even when p vanishes.

28 -
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Quadratic cost: numerics

I
\

o
Faria

Source: PL density on X = [0, 3]?
Target: Uniform grid Y in [0, 1]°.

» The damped Newton's algorithm converges even when p vanishes.

» N =107 pb solved in 17 iterations.psdot (python); geogram

28 - 3
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Outline

Case 1: mirror for point light source

Case 2: mirror for collimated source light

Optimal transport

Semi-discrete optimal transport
Damped Newton algorithm

Non-imaging optics: Far-Field target
Non-imaging optics: Near-Field target



Mirror

30 -1

Point licht source: implementation

Mirror R

Point source



Mirror / Point licht source: implementation

Mirror R
» Newton schemes:

Computation of descent direction / time step

Point source

30 -2



Mirror / Point licht source: implementation

Mirror R
» Newton schemes:

Computation of descent direction / time step

» Evaluation of (G and DG

fm d pu(x) fmj d p() Point source
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Mirror / Point licht source: implementation

Mirror R
» Newton schemes:

Computation of descent direction / time step

» Evaluation of (G and DG

fm d pu(x) fmj d p() Point source

Main difficulty: computation of visibility cells V;

30 - 4



Mirror / Point licht source: implementation

Computation of Visibility (Laguerre) cells

Definition: Given P = {p;}1<i<ny C R% and (w;)1<i<ny € RY

Pow}(p;) := {z € R% i = argmin; ||z — p;||* + w;}

31-1



Mirror / Point licht source: implementation

Computation of Visibility (Laguerre) cells

Definition: Given P = {p;}1<i<ny C R% and (w;)1<i<ny € RY

Pow}(p;) := {z € R% i = argmin; ||z — p;||* + w;}

» Efficient computation of (Pow:(p;)); using CGAL (d = 2, 3)
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Mirror / Point licht source: implementation

Computation of Visibility (Laguerre) cells

Definition: Given P = {p;}1<i<ny C R% and (w;)1<i<ny € RY

Pow}(p;) := {z € R% i = argmin; ||z — p;||* + w;}

» Efficient computation of (Pow:(p;)); using CGAL (d = 2, 3)

Lemma: With ) = log(R), p; := — 2~ and w; :=

2
2/4,3' T HQK,J H

Vi(k) = Powp(p;) N§?

31-3



Mirror / Point light source

Mirror R

v =>" 18, discretization of Cameraman (N = 400?). |

Point source

1w = uniform measure on half-sphere S5
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Mirror / Point light source

Mirror |

v=>" 16, discretization of Cameraman (N = 400?).

0 - A

Point source
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Collimated source
Mirror K |

\

R2 x {0}
Collimated source

33-1

Far Field Target

targeted image N = 400 x 480




Collimated source / Far Field Target
Mirror R

targeted image N = 400 X 480

LA T
------

R? x {0} X2
Collimated source

Mirror R

"

.\ Vi(v) = Pow(p;) N (R? x {0})

light source
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Collimated source / Far Field Target
Mirror K |
\\é\o(\

\ < -

(
R? x {0} \Z
Collimated source

targeted image N = 400 X 480

R o

\

33 -3



| enses

34

We solve 8 optical problems with one program
~ Vi(1) = Pow(p;) N X where X = S? R? x {0}
~» Automatic differentiation
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ollimated source

Mmirror

Singularity

ar Field Target

mesh of the mirror

Image rendered with LUXRENDER
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Outline

Case 1: mirror for point light source

Case 2: mirror for collimated light source

Optimal transport

Semi-discrete optimal transport
Damped Newton algorithm

Non-imaging optics: Far-Field target
Non-imaging optics: Near-Field target



Problem with far-field assumption

Putting three copies of the same lens shifted by h...

-----------




Problem with far-field assumption

Putting three copies of the same lens shifted by h...

-----------

........ ... produces a superposition of images shifted by h.



Problem with far-field assumption

Putting three copies of the same lens shifted by h...

........ ... produces a superposition of images shifted by h.



Problem with far-field assumption

Putting three copies of the same lens shifted by h...

........ ... produces a superposition of images shifted by h.

‘One wants to produce images at finite distance — near-field problem.

37 - 4




lterated FF problem

NF pb: Build a component R sending light towards zq, ..

.,ZNE{D}XRQ

(instead of y1,...,yn € S?))

36 -1



lterated FF problem

NF pb: Build a component R sending light towards z1,...,2y € {D} x R?

We approximate solutions to the NF problem using a sequence of FF pb.

Step 0: Solve far-field problem with target y,fo) = 2; /|||

(O) ............................... L ZZ
yz ...........................
O / 1
o
(=R} < RS {0} x R? {D} x R?
Source Lens Target
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lterated FF problem

NF pb: Build a component R sending light towards z1,...,2y € {D} x R?

We approximate solutions to the NF problem using a sequence of FF pb.

Step 0: Solve far-field problem with target y,fo) = 2; /|||

SO ) SRR S
% """ o 2;
O ®
o
{—R} x R? {0} x R? {D} x R?
Source Lens Target

38 - 3 first estimation of the lens



lterated FF problem

NF pb: Build a component R send

ing lig

We approximate solutions to the N

- prob

ht towards 21,..., 2y € {D} x R?

em using a sequence of FF pb.

Step 0: Solve far-field problem with target y\” = 2, /2|

{—R} x R?
Source

38 - 4

bz(-o) = barycenter of ¢th fag

first estimation of the lens
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lterated FF problem

NF pb: Build a component R send

ing lig

We approximate solutions to the N

- prob

ht towards 21,..., 2y € {D} x R?

em using a sequence of FF pb.

Step 0: Solve far-field problem with target y = z;/ ||z
Step 1: Solve far-field problem with target y( ) = = (z; — b§ ))/sz — b,EO)H

{—R} x R?
Source

36 -5

bz(-o) = barycenter of ¢th fag

first estimation of the lens

et



lterated FF problem

NF pb: Build a component R send

ing lig

We approximate solutions to the N

Step 0: Solve far-field problem with target y
Step 1: Solve far-field problem with target y,

.................................................................................. @
0
{-R} xR? {0} x R?
Source Lens

Step k+1: Solve far-field problem with target y,

- prob

ht towards 21,..., 2y € {D} x R?

em using a sequence of FF pb.

= 2; /|| 2|

W= (2 = )/ )|z — 0

O

’ (1) ................................................... . Z’L

Y;
[ )
®
{D} x R?
Target

k k
D — (2 = b))z — 07|

38 -6

Efficient heuristic to solve NF problem using a FF solver...




Convergence of the algorithm

39

Target

2nd iteration

5th iteration

1st iteration
size | k=1 |k=2 | k= k = Total (£ = 6)
1282 Os 9s Os 28 31s
2562 | 38s 61s 38s 31s 228s
5122 2458 294s 240s 194s 1303s
10242 | 1598s | 2095s | 1586s | 1489s 9077s




Pillows
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Pillows
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Pillows
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Color channels

red light

blue light

screen

» We solve one near-field problem per color channel.

» Near-field assumption needs to be taken into account fol
the image to be perfectly superimposed on the screen.
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Physical prototypes




Physical prototypes
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Physical prototypes




Conclusion

We solved 4 inverse problems arising in nonimaging optics
using semi-discrete approach and optimal transport

» Each problem is a Monge-Ampere equation

» For far-field target, OT problem on R? or S ~+ Newton algorithm
» lterative procedure for real-life light target
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Conclusion

We solved 4 inverse problems arising in nonimaging optics
using semi-discrete approach and optimal transport

» Each problem is a Monge-Ampere equation

» For far-field target, OT problem on R? or S ~+ Newton algorithm
» lterative procedure for real-life light target

Ongoing work

~~ Generalization to generated jacobian equations (application to optics,
near field target) : Anatole Gallouet's talk

~+ Extended light (Jean-Baptiste Keck post-doc)

~~ Metasurfaces (with Cristian Gutierrez)
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Conclusion

We solved 4 inverse problems arising in nonimaging optics
using semi-discrete approach and optimal transport

» Each problem is a Monge-Ampere equation

» For far-field target, OT problem on R? or S ~+ Newton algorithm
» lterative procedure for real-life light target

Ongoing work

~~ Generalization to generated jacobian equations (application to optics,
near field target) : Anatole Gallouet's talk

~+ Extended light (Jean-Baptiste Keck post-doc)

~~ Metasurfaces (with Cristian Gutierrez)

Thank youl
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