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Motivation
Image analysis

The problems we are interested in come from image analysis.

Segmentation Restoration Inpainting

X. Li, Zhao, Han, Tong, and Yang
2019

Q. Li, Wang, Zhang, and Lu 2015
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Motivation
Image analysis

The problems we are interested in come from image analysis.

Segmentation: I? = arg minI Eseg(I, fI).

Restoration: fÎ = arg minf Eden(f, fĨ).

Inpainting: fÎ = arg minf Einp(f, fĨ).

We focused on variational approaches to solve these problems.
Energies are defined by terms that guide the optimization towards the
solution of interest, e.g.,

I Data fidelity. The solution should not differ much from the input.
I Spatial coherence. Images are composed of regions with low

variability in color.
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Motivation
Geometric priors

The Mumford Shah ( Mumford and Shah 1989) is a model for segmentation
and denoising.

min
f,K

α

∫
Ω

‖fI − f‖2dx+ β

∫
Ω\K
‖∇f‖2dx+ λPer(K).

The ROF ( Rudin, Osher, and Fatemi 1992) model uses total variation for
image denoising.

min
f
α

∫
Ω

‖fI − f‖2dx+ β

∫
Ω

‖∇f‖dx.

I A measure of perimeter is present in both models.
I Geometric priors as perimeter, area or curvature are useful due to

their flexibility and predictability.

In this thesis, we are interested in the combined use of perimeter and
squared curvature as geometric priors.
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Motivation
Completion property

minX⊂ΩData(X) + Perimeter(∂X).
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Motivation
State-of-the-art

Continuous setting: Define the energy over the whole domain and minimize the
elastica with respect the level-curves ( Chan, S. H. Kang, Kang, and Shen 2002).∫

Ω

(
α+ β∇ ·

(
∇fI
‖∇fI‖

)2
)
‖∇fI‖dΩ.

I Numerical instability: Fourth-order Euler-Lagrange equation.
I Susceptible to bad local minimum.

Discrete setting:
T-junctions matching

Fast algorithm, but limited to absolute value of
curvature (polygonal solutions) and inpainting
application.

Masnou and Morel 1998

Linear programming
Global formulation, but prohibitive running times
even for small (thus unprecise) neighborhoods. Not
suitable for digital sets.

Schoenemann, Kahl, and Cremers
2009

Triple cliques
Global formulation, quadratic non-submodular
energy. Limited precision.

Nieuwenhuis, Toeppe, Gorelick,
Veksler, and Boykov 2014

Daniel Martins Antunes et al. Max-flow for digital elastica shape optimization 7
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Motivation
Goals

Models based on the minimization of the elastica energy

Continuous Discrete Digital
Numerical instability Yes No No
Suitable for digital sets No No Yes
Rounding issues Yes No No
Contour completion Partial Partial Extended
Global optimum (Free elastica) - - Yes

Daniel Martins Antunes et al. Max-flow for digital elastica shape optimization 8
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Digital sets and convergent estimators

I Digital grid particularities and restrictions.
I Multigrid convergence of geometric estimators.

Daniel Martins Antunes et al. Max-flow for digital elastica shape optimization 10
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Digital sets and convergent estimators
Digital set peculiarities

Where can we do better?

I Most of models neglect the digital character of digital images and
ignore the fact that geometric measurements (mainly those local as
tangent and curvature) in such objects should be done with a
definition of convergence that is specific for digital shapes.

Daniel Martins Antunes et al. Max-flow for digital elastica shape optimization 11
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Digital set peculiarities

Where can we do better?

I Most of models neglect the digital character of digital images and
ignore the fact that geometric measurements (mainly those local as
tangent and curvature) in such objects should be done with a
definition of convergence that is specific for digital shapes.

Exact sampling x digitization
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Digital sets and convergent estimators
Digital set peculiarities

Where can we do better?

I Most of models neglect the digital character of digital images and
ignore the fact that geometric measurements (mainly those local as
tangent and curvature) in such objects should be done with a
definition of convergence that is specific for digital shapes.

Digitization ambiguity
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Digital sets and convergent estimators
Multigrid convergent estimators

Definition (Multigrid convergence)
Let X be a family of shapes in Rn and u a geometric quantity that
is defined for every shape X ∈ X . Further, let Dh(X) denote the
digitization of X with grid step h.

The estimator û is multigrid convergent for X if and only if, for any
X ∈ X there exists hX > 0 such that for every 0 < h < hX

|û(Dh(X))− u(X)| ≤ τ(h), with lim
h→0

τ(h) = 0.

Multigrid convergent estimator of area

̂Area(X) = h2|Dh(X)|.

Daniel Martins Antunes et al. Max-flow for digital elastica shape optimization 12
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Motivation
Multigrid convergent estimators

Disk of radius 5(Area ≈ 78.54).

h = 1.0, Â = 81. h = 1
2
, Â = 79.25. h = 1

4
, Â = 78.56.

h = 1
16
, Â = 78.44. h = 1

32
, Â = 78.5. h = 1

64
, Â = 78.53.

Daniel Martins Antunes et al. Max-flow for digital elastica shape optimization 13
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Digital sets and convergent estimators
Multigrid convergent estimators

I Integral Invariant (II) Coeurjolly, Lachaud, and Levallois 2013
I Proved multigrid convergent for C2 convex shapes with bounded

curvature.

κ̂(p) =
3

r3

(
πr2

2
− |Br(p) ∩X|

)
Daniel Martins Antunes et al. Max-flow for digital elastica shape optimization 14
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Digital sets and convergent estimators
Conclusion

I Digital sets are ambiguous and are constrained to the digital grid.

I The multigrid convergence is an adapted definition of convergence
for geometric estimation on digital sets.

Can we construct optimization models using multigrid
convergent estimators?

Daniel Martins Antunes et al. Max-flow for digital elastica shape optimization 15
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Elastica minimization via graph-cuts

I Balance coefficient to estabilize curvature
estimation.

I Set up a graph whose minimum cut
approximates the zero level set of the balance
coefficient.

I GraphFlow algorithm. Up to 10x faster than
FlipFlow.

Daniel Martins Antunes et al. Max-flow for digital elastica shape optimization 16



Motivation Digital sets and convergent estimators Elastica minimization via graph-cuts Conclusion References

Non-submodular elastica
Balance coefficient

I Balance coefficient

ur(D, p) =

(
πr2

2
− |Br(p) ∩D|

)2

I White contour: contour of the shape
I Pink contour: ε-level set of the

balance coefficient

Daniel Martins Antunes et al. Max-flow for digital elastica shape optimization 17
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Elastica minimization via graph-cuts
Graph cut
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Elastica minimization via graph-cuts
Building the graph

I Optimization band

F (D) :=D \O(D)

I Graph GD(V, E, c)

V = {vp | p ∈ O(D)} ∪ {s, t}
E = {{vp, vq} | p, q ∈ O(D) and q ∈ N4(p)} ∪ Est
Est = {(s, vp), (vp, t) | p ∈ O(D)}

I Edge’s weight

edge e c(e)

{vp, vq} 1
2
(ur(D, p) + ur(D, q))

(s, vp) M
(vp, t) M

I Digital shape update

D(k+1) = F (D(k)) + S(k)
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Elastica minimization via graph-cuts
Shape evolution

α = 1/82, β = 1.

I What if we stop the evolution when elastica increases?

Daniel Martins Antunes et al. Max-flow for digital elastica shape optimization 20



Motivation Digital sets and convergent estimators Elastica minimization via graph-cuts Conclusion References

Elastica minimization via graph-cuts
Shape evolution

α = 1/82, β = 1.

I What if we stop the evolution when elastica increases?

Daniel Martins Antunes et al. Max-flow for digital elastica shape optimization 20



Motivation Digital sets and convergent estimators Elastica minimization via graph-cuts Conclusion References

Elastica minimization via graph-cuts
Shape evolution

Stop if elastica increases (α = 1/82, β = 1)
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Elastica minimization via graph-cuts
Shape evolution

Stop if elastica increases (α = 1/222, β = 1)

Daniel Martins Antunes et al. Max-flow for digital elastica shape optimization 22



Motivation Digital sets and convergent estimators Elastica minimization via graph-cuts Conclusion References

Elastica minimization via graph-cuts
The a-probe set

Definition (a-probe set)
Let D ⊂ Ω ⊂ Z2 a digital set and a a natural number. The a-probe
set of D is defined as

Pa(D) = D ∪
⋃
a′<a

D+a′
∪D−a

′
,

where D+a(D−a) denotes a dilation(erosion) by a disk of radius a.

Candidate selection

sol(D(k))←−
⋃

D′∈Pa(D(k))

{
F (k) + S | mincut(S,GD′)

}
Candidate validation

D(k+1) ←− arg min
D′∈sol(D(k))

Êθ(D′)
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Elastica minimization via graph-cuts
Shape evolution with a-probe set

Stop if elastica increases (α = 1/222, β = 1)
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Elastica minimization via graph-cuts
Shape evolution with a-probe set

Always update (α = 1/222, β = 1)
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Elastica minimization via graph-cuts
Shape evolution with a-probe set
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Elastica minimization via graph-cuts
Contour correction

Initial segmentation 0.825s (3 it)
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Elastica minimization via graph-cuts
Contour correction

Initial segmentation 0.746s (3 it)
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Elastica minimization via graph-cuts
Contour correction

Initial segmentation 1.1s (3 it)

Daniel Martins Antunes et al. Max-flow for digital elastica shape optimization 26



Motivation Digital sets and convergent estimators Elastica minimization via graph-cuts Conclusion References

Elastica minimization via graph-cuts
Contour correction

Initial segmentation 10s (30 it)
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Elastica minimization via graph-cuts
Contour completion

Initial segmentation

17s (62 it)
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Conclusion
Summary of models

Model Implementation Running Free Constrained Image
time elastica elastica term

LocalSearch medium slow yes(opt) yes no
FlipFlow hard acceptable yes no yes

( BalanceFlow ) medium acceptable yes no yes
GraphFlow easy fast yes(opt) no yes

Table: Models summary. The qualitative attributes are relative, e.g., the
GraphFlow presents the lowest running time while LocalSearch presents the
highest.

Pixels LocalSearch FlipFlow BalanceFlow GraphFlow
Triangle 8315 4.8s/it 0.4s/it 0.38s/it 0.14s/it
Square 12769 2s/it 0.51s/it 0.47s/it 0.12s/it
Ellipse 10038 3.1s/it 0.64s/it 0.57s/it 0.1s/it
Flower 26321 12.3s/it 1.23s/it 0.94s/it 0.14s/it
Bean 25130 6.4s/it 1.2s/it 1.17s/it 0.16s/it

Table: Free elastica running times. Running time and input size for the free
elastica experiment.
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Conclusion
Summary of models

I We proposed a digital elastica optimization model.
I GraphFlow is extendable (suitable for data terms) and our fastest

model.
I Contour completion is achieved in some cases.

Pros
I Topology is flexible.
I Easily parallelizable.
I Neighborhood flexibility.

Cons
I Susceptible to bad local minimum (we can ameliorate with a better

definition of the neighborhood).
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Conclusion
Perspectives

I GraphFlow and perimeter: enrich the cost function of GraphFlow
with the weights defined in Boykov and Kolmogorov 2003.

I Different neighborhoods: random, linear extension.
I Dynamic radius: use the parameter free Maximal Digital Circular

Arcs estimator of curvature to adapt the estimation disk radius to
use.

I Multiresolution: Improve running time; or improve estimator
precision.

I Image analysis applications: Objective comparison of our method
and competitive ones (e.g. study quantitative measurements such as
the ratio of inflexion points for the contour correction application) .

I Global formulation and multigrid convergent estimators: Does
a practical model for elastica exist?
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Thank you!
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