Plane-probing algorithms for the analysis of digital surfaces

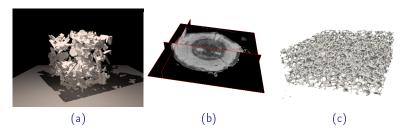
Tristan Roussillon

Université de Lyon, INSA Lyon, LIRIS, France

DGDVC, 30/03/2021

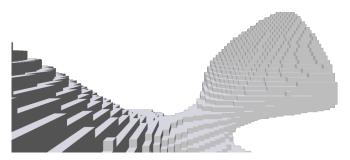
PARADIS (ANR-18-CE23-0007-01) research grant

Data



voxel sets in 3d digital images

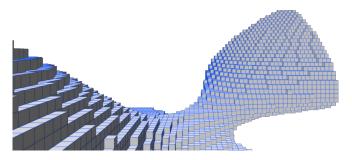
Digital surfaces



pros/cons

- + efficient spatial data structures
- + set operations (union, intersection, ...)
- + integer-only, exact computations
- + ...
- poor geometry

Digital surfaces

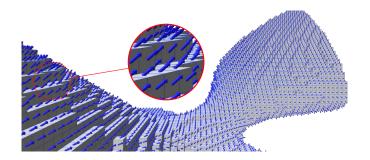


pros/cons

- + efficient spatial data structures
- + set operations (union, intersection, ...)
- + integer-only, exact computations
- + ...
- poor geometry

Analysis of digital surfaces

- enhance the geometry by estimating normal vectors
- ⇒ applications: measurements, deformation for simulation or tracking, surface fairing, rendering...



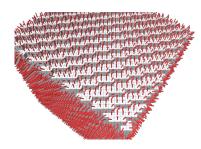
A lot of methods

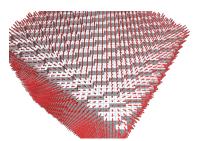
- ► fitting,
- ► Voronoi diagram,
- ▶ integral invariants,
- convolution,
- energy minimization,
- probabilistic approaches,
- **.**..

Flaw

Existing methods are not quite satisfactory

- ightharpoonup parameter required (\approx width of a neighborhood)
- that parameter is hard to pick
 - get decent estimates in flat/smooth parts
 - preserve sharp features





Challenge

Desiderata

- parameter-free method
- theoretical guarantees
 - exact on flat parts
 - converge on smooth parts as resolution increases

Key idea

- bound neighborhoods by their thickness instead of their width
- by digitized planes have a thickness bounded by a small constant

Plane-probing algorithms

Definition

Given a digitized plane P and a starting point $p \in P$, a plane-probing algorithm computes the normal vector of P by sparsely probing it with the predicate "is $x \in P$?".

H and R

[LPR2017] J-O. L., X. P., T. R. Two Plane-Probing Algorithms for the Computation of the Normal Vector to a Digital Plane. J. Math. Imaging Vis., 59(1):23-39, 2017.

 R^1

[LR2019] T. R., J-O. L., An efficient and quasi linear worst-case time algorithm for digital plane recognition, *DGCl'19*, LNCS, vol. 11414, p.380-393, 2019.

PH, PR, PR¹

[LMR2020] J-O. L., J. M., T. R. An Optimized Framework for Plane-Probing Algorithms, J. Math. Imaging Vis., 62(5):718-736, 2020.

Implemented in DGtal (dgtal.org)

Outline

Context and motivation

Plane-probing algorithms
Generalized Euclidean algorithm
Delaunay triangulation
Generalization

Application to digital surfaces

One of the oldest algorithms

Euclidean algorithm

Given a couple of integers,

- subtract the smaller from the larger one, and repeat
- until both numbers are equal.

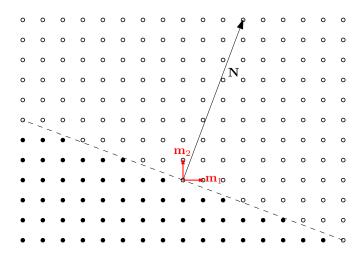
Example

step	0	1	2	3	4
а	3	3	3	1	1
Ь	8	5	2	2	1

we focus on the sequence of subtractions, assume gcd(a, b) = 1

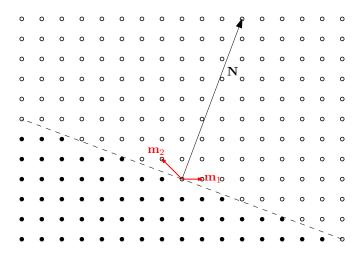
$$m_1 = (1,0), \quad m_1 \cdot N = a = 3$$

 $m_2 = (0,1), \quad m_2 \cdot N = b = 8$



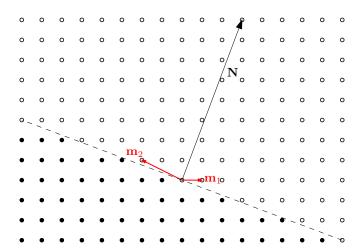
$$m_1 = (1,0), \qquad m_1 \cdot N = a = 3$$

 $m_2 = (-1,1), \qquad m_2 \cdot N = b = 5$



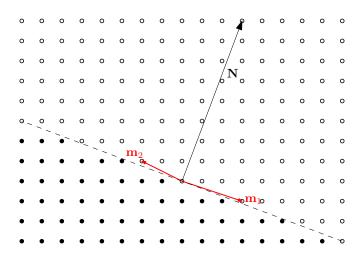
$$m_1 = (1,0), \qquad m_1 \cdot N = a = 3$$

 $m_2 = (-2,1), \qquad m_2 \cdot N = b = 2$



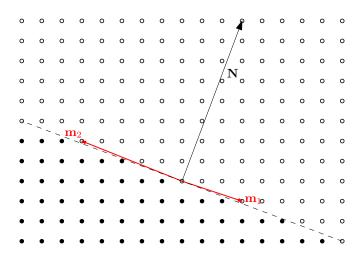
$$m_1 = (3, -1), \quad m_1 \cdot N = a = 1$$

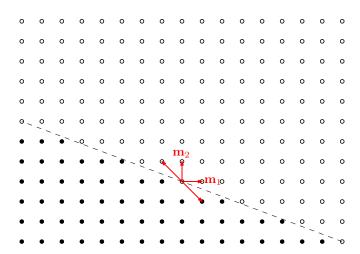
 $m_2 = (-2, 1), \quad m_2 \cdot N = b = 2$

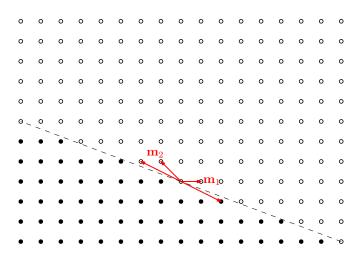


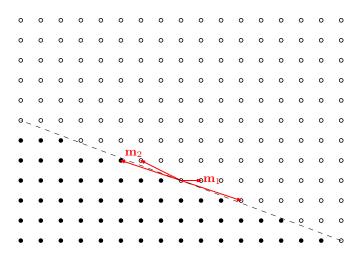
$$m_1 = (3, -1), \quad m_1 \cdot N = a = 1$$

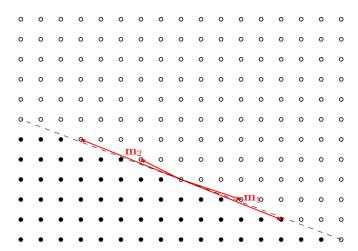
 $m_2 = (-5, 2), \quad m_2 \cdot N = b = 1$

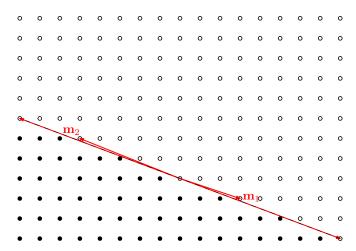












Extension to 3d

No unique extension to the Euclidean algorithm!

Assuming $0 \le a \le b \le c$:

- ightharpoonup Brun: $(a,b,c) \rightarrow (a,b,c-b)$;
- ightharpoonup Selmer: $(a,b,c) \rightarrow (a,b,c-a)$;
- Farey: $(a, b, c) \rightarrow (a, b a, c)$;
- ► Fully-Subtractive: $(a, b, c) \rightarrow (a, b a, c a)$;
- Poincaré: $(a, b, c) \rightarrow (a, b a, c b)$.

Note: the same operation is done at each step

A class of generalized Euclidean algorithms

Given three positive numbers (a, b, c), with gcd(a, b, c) = 1,

- while they are not all equal to 1,
- ▶ subtract from a number $x \in \{a, b, c\}$ a strictly smaller number $y \in \{a, b, c\}$, y < x.

Example

$$\begin{aligned} & m_1 = (1,0,0), & m_1 \cdot N = a = 1 \\ & m_2 = (0,1,0), & m_2 \cdot N = b = 2 \\ & m_3 = (0,0,1), & m_3 \cdot N = c = 3 \end{aligned}$$

A class of generalized Euclidean algorithms

Given three positive numbers (a, b, c), with gcd(a, b, c) = 1,

- while they are not all equal to 1,
- ▶ subtract from a number $x \in \{a, b, c\}$ a strictly smaller number $y \in \{a, b, c\}$, y < x.

Example

$$m_1 = (1,0,0),$$
 $m_1 \cdot N = a = 1$
 $m_2 = (0,1,0),$ $m_2 \cdot N = b = 2$
 $m_3 = (0,-1,1),$ $m_3 \cdot N = c = 1$

A class of generalized Euclidean algorithms

Given three positive numbers (a, b, c), with gcd(a, b, c) = 1,

- while they are not all equal to 1,
- ▶ subtract from a number $x \in \{a, b, c\}$ a strictly smaller number $y \in \{a, b, c\}$, y < x.

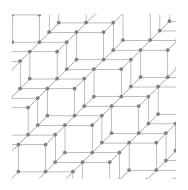
Example

$$egin{array}{ll} m_1 = (1,0,0), & m_1 \cdot N = a = 1 \ m_2 = (-1,1,0), & m_2 \cdot N = b = 1 \ m_3 = (0,-1,1), & m_3 \cdot N = c = 1 \ \end{array}$$

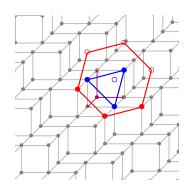
Digital plane

Let $N \in \mathbb{Z}^3$ whose components (a,b,c) are coprime integers s.t. $0 < a \le b \le c$,

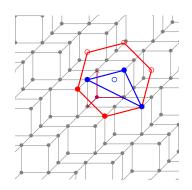
$$\mathsf{P}_\mathsf{N} := \{ \mathsf{x} \in \mathbb{Z}^3 \mid \mathsf{0} \leq \mathsf{x} \cdot \mathsf{N} < \|\mathsf{N}\|_1 \}$$



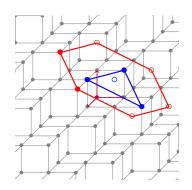
- $ightharpoonup (m_1, m_2, m_3) := (e_1, e_2, e_3), q := (1, 1, 1) \notin P_N$
- \Rightarrow triangle $(q m_1, q m_2, q m_3)$
- \Rightarrow hexagon $\{q + m_i m_j \mid i, j \in \{1, 2, 3\}, i \neq j\}$



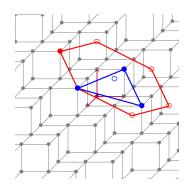
- $ightharpoonup (m_1, m_2, m_3) := (e_1, e_2, e_3), q := (1, 1, 1) \notin P_N$
- \Rightarrow triangle $(q m_1, q m_2, q m_3)$
- \Rightarrow hexagon $\{q + m_i m_j \mid i, j \in \{1, 2, 3\}, i \neq j\}$



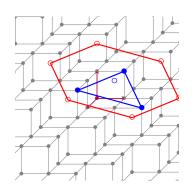
- $ightharpoonup (m_1, m_2, m_3) := (e_1, e_2, e_3), q := (1, 1, 1) \notin P_N$
- \Rightarrow triangle $(q m_1, q m_2, q m_3)$
- \Rightarrow hexagon $\{q + m_i m_j \mid i, j \in \{1, 2, 3\}, i \neq j\}$



- $ightharpoonup (m_1, m_2, m_3) := (e_1, e_2, e_3), q := (1, 1, 1) \notin P_N$
- \Rightarrow triangle $(q m_1, q m_2, q m_3)$
- \Rightarrow hexagon $\{q + m_i m_j \mid i, j \in \{1, 2, 3\}, i \neq j\}$



- $ightharpoonup (m_1, m_2, m_3) := (e_1, e_2, e_3), q := (1, 1, 1) \notin P_N$
- \Rightarrow triangle $(q m_1, q m_2, q m_3)$
- \Rightarrow hexagon $\{q + m_i m_j \mid i, j \in \{1, 2, 3\}, i \neq j\}$



⇒ a plane-probing algorithm

$$\Pi := \{ \mathsf{P}_{\mathsf{N}} \mid \mathsf{N} \in \mathbb{Z}^3 \setminus \mathsf{0} \}$$

Input

- ightharpoonup P ∈ Π described by the predicate InPlane: "is x ∈ P?"
- ightharpoonup a starting point p s.t. InPlane(p), q := p + (1, 1, 1)

Main trick

- Assume $p \cdot N = 0 \ (\Rightarrow q \cdot N = ||N||_1)$, where N, the normal of P
- ▶ InPlane(x) \Leftrightarrow (x q) · N < 0.

Properties of generalized Euclidean algorithms

At each step

- P1 p and q both project into triangle $(q m_1, q m_2, q m_3)$ along (1, 1, 1)
- P2 matrix $M:=[m_1,m_2,m_3]$ is unimodular, i.e. $\det\left(M\right)=1$

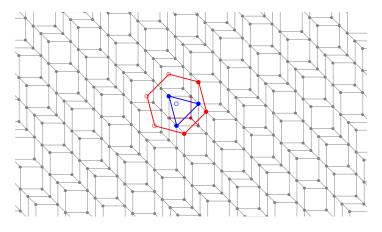
Termination

- ▶ number of steps $\leq \|N\|_1 3$ (6 calls to InPlane per step)
- ▶ at the end, if $\mathbf{p} \cdot \mathbf{N} = 0$ ($\Rightarrow \mathbf{q} \cdot \mathbf{N} = \|\mathbf{N}\|_1$) $\forall k \in \{1, 2, 3\}, \ \mathbf{m}_k \cdot \mathbf{N} = 1$ \Rightarrow the normal of triangle $(\mathbf{q} - \mathbf{m}_1, \mathbf{q} - \mathbf{m}_2, \mathbf{q} - \mathbf{m}_3)$ is \mathbf{N}

whichever the subtraction we choose

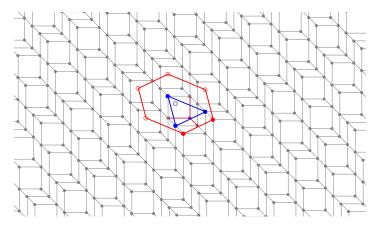
Example

Digital plane of normal (5,2,3)



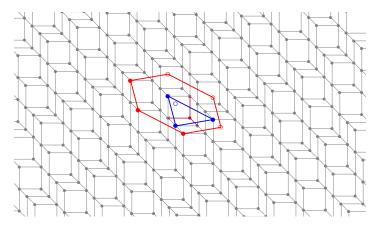
Example

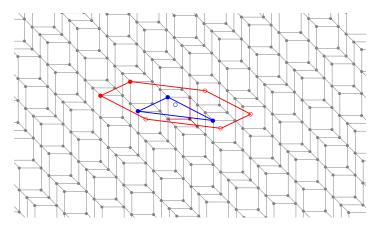
Digital plane of normal (5,2,3)

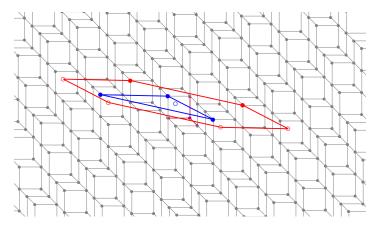


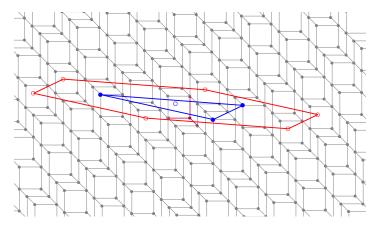
Example

Digital plane of normal (5,2,3)

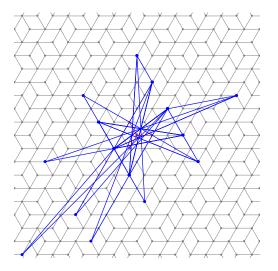






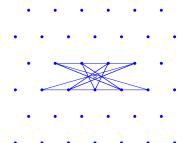


All possible final triangles



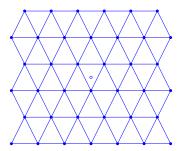
About final triangles

- \blacktriangleright vertices $\in \Lambda := \{ \mathbf{x} \in \mathbb{Z}^3 \mid \mathbf{x} \cdot \mathsf{N} = \|\mathsf{N}\|_1 1 \}$
- \triangleright do not contain any other point of Λ (P2)
- ightharpoonup projection of p along (1,1,1) (P1)



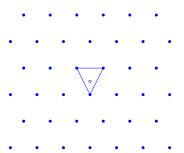
Towards a selection criterion

- ightharpoonup The Delaunay triangulation of Λ gives acute triangles
- p projects into one of them (if no co-circularity)



Towards a selection criterion

- \triangleright The Delaunay triangulation of Λ gives acute triangles
- p projects into one of them (if no co-circularity)



At each step:

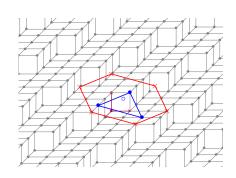
- consider a candidate set 5
- ► filter 5 through InPlane
- pick a closest point s*: the circumsphere of T ∪ s* doesn't contain any other
- ▶ update *T* with this point



The last triangle is very often acute, but not always

At each step:

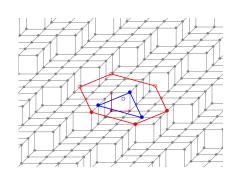
- consider a candidate set 5
- ► filter 5 through InPlane
- pick a closest point s*: the circumsphere of T ∪ s* doesn't contain any other
- ▶ update T with this point



The last triangle is very often acute, but not always

At each step:

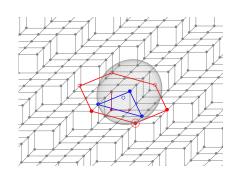
- consider a candidate set 5
- ► filter 5 through InPlane
- pick a closest point s*: the circumsphere of T ∪ s* doesn't contain any other
- ▶ update T with this point



The last triangle is very often acute, but not always

At each step:

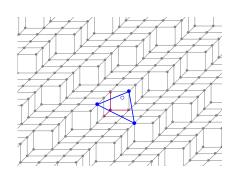
- consider a candidate set 5
- ► filter 5 through InPlane
- pick a closest point s*: the circumsphere of T∪s* doesn't contain any other
- ▶ update T with this point



The last triangle is very often acute, but not always

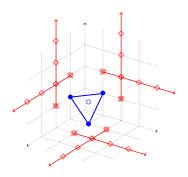
At each step:

- consider a candidate set 5
- ▶ filter 5 through InPlane
- pick a closest point s*: the circumsphere of T ∪ s* doesn't contain any other
- ▶ update *T* with this point

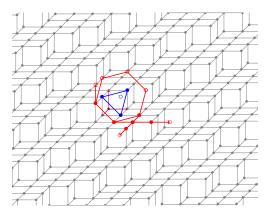


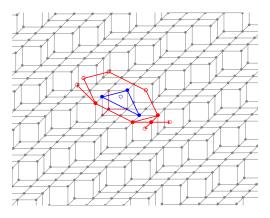
The last triangle is very often acute, but not always

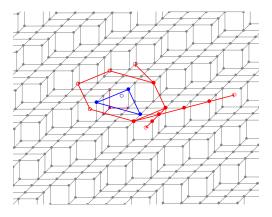
Algorithm R (candidates along rays)

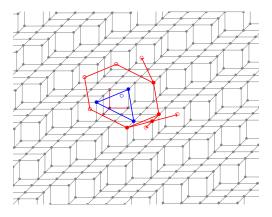


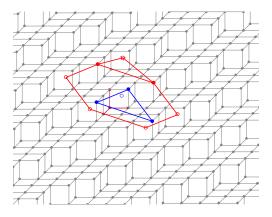
- ► same algorithm as before, only 5 differs
- ► S is infinite but the filtering by InPlane gives a finite point set
- $ightharpoonup O(\|N\|_1)$ steps, $O(\log(\|N\|_1))$ calls to InPlane per step
- the last triangle is always acute

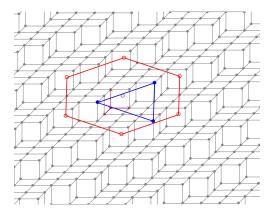












Algorithm R¹

Features

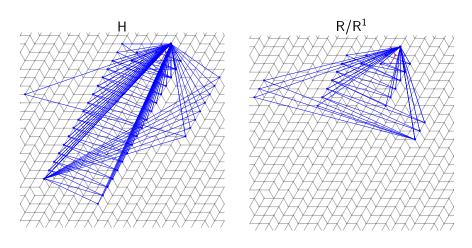
- ► has the same output as R
- ▶ but $O(\|N\|_1)$ calls to InPlane instead of $O(\|N\|_1 \log \|N\|_1)$

How?

- 1. local probing: 6 rays \rightarrow at most 2 rays and 1 point
- 2. geometrical study: 2 rays ightarrow 1 ray and 1 point
- 3. efficient algorithm: 1 ray and 1 point ightarrow a $\emph{closest}$ point

Digital plane of normal (67, 1, 91)





Recap

Main features

- ▶ N from a point p s.t. $p \cdot N = 0$
- by sparse and local computations:
 - p projects into all triangles
 - ▶ with R and R¹, the current triangle is acute every two steps, always acute at the end
- $O(\|\mathbf{N}\|_1)$ calls to InPlane with H and \mathbb{R}^1 , $O(\|\mathbf{N}\|_1 \log (\|\mathbf{N}\|_1))$ with \mathbb{R}

Drawbacks

- 1. do not retrieve N from any point
- 2. do not retrieve all triangles of the lattice Λ

Problem #1: starting from any point

Input

- P of normal N
- ▶ InPlane: "is $x \in P$?"

Equivalence used so far

- ightharpoonup assume $q \cdot N = ||N||_1$
- ▶ InPlane(x) \Leftrightarrow (x q) \cdot N < 0

Generalized equivalence

- ightharpoonup assume $q \cdot N \ge ||N||_1$
- ▶ $\exists I \in \mathbb{N} \text{ s.t. InPlane}(q + I(x q)) \Leftrightarrow (x q) \cdot \mathbb{N} < 0.$

Predicate NotAbove

```
Data: InPlane, q and an integer L > 2 \|N\|_1
  Input: A point x \in \mathbb{Z}^3 s.t. q \cdot N - ||N||_1 < x \cdot N
  Output: True iff (x - q) \cdot N < 0 in O(\log(L)) calls to InPlane
u \leftarrow x - q; // direction
2 l ← 1:
_3 while l < L do
      if InPlane(q + /u) then return True;
if InPlane(q - Iu) then return False;
   1 \leftarrow 21;
7 return False:
```

 \mathbf{q}

 \mathbf{x}

it is enough to use NotAbove instead of InPlane

Predicate NotAbove

```
Data: InPlane, q and an integer L > 2 \|N\|_1
  Input: A point x \in \mathbb{Z}^3 s.t. q \cdot N - ||N||_1 < x \cdot N
  Output: True iff (x - q) \cdot N < 0 in O(\log(L)) calls to InPlane
u \leftarrow x - q; // direction
_2 / \leftarrow 1:
_3 while l < L do
      if InPlane(q + Iu) then return True;
if InPlane(q - Iu) then return False;
   1 \leftarrow 21;
7 return False:
```

 \mathbf{q}

 \mathbf{x}

it is enough to use NotAbove instead of InPlane

- top point q
- ightharpoonup upper triangle $(q m_1, q m_2, q m_3)$
- ► lower triangle $(q m_2 m_3, q m_3 m_1, q m_1 m_2)$
- ▶ bottom point $q \sum_k m_k$

- top point q
- upper triangle $(q m_1, q m_2, q m_3)$
- ► lower triangle $(q m_2 m_3, q m_3 m_1, q m_1 m_2)$
- **b** bottom point $q \sum_k m_k$

- top point q
- upper triangle $(q m_1, q m_2, q m_3)$
- ▶ lower triangle $(q m_2 m_3, q m_3 m_1, q m_1 m_2)$
- **b** bottom point $q \sum_k m_k$

- top point q
- ightharpoonup upper triangle $(q m_1, q m_2, q m_3)$
- ► lower triangle $(q m_2 m_3, q m_3 m_1, q m_1 m_2)$
- **b** bottom point $q \sum_k m_k$

Staying close to the digital plane

Update rule

- when the parallelepiped has less than 4 vertices in P,
 - ⇔ the lower triangle is updated (bottom moves, not top)
- otherwise
 - ⇔ the upper triangle is updated (top moves, not bottom)
- invariant: at least one point in P (bottom), one not (top)

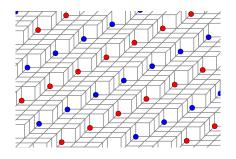
Generalized versions of H. R and R¹

For each $X \in \{H, R, R^1\}$, PX uses a parallelepiped and the above update rule with NotAbove instead of InPlane.

Recap

Main features

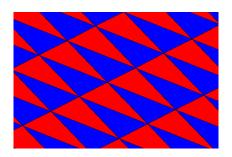
- N from any point p such that InPlane(p),
- ▶ all triangles of the lattice $\Lambda = \{x \in \mathbb{Z}^3 \mid x \cdot N = ||N||_1 1\}$
- ▶ PH and PR¹ require $O(\|N\|_1)$ calls to NotAbove ⇒ $O(\|N\|_1 \log (\|N\|_1))$ calls to InPlane.



Recap

Main features

- N from any point p such that InPlane(p),
- ▶ all triangles of the lattice $\Lambda = \{x \in \mathbb{Z}^3 \mid x \cdot N = ||N||_1 1\}$
- ▶ PH and PR¹ require $O(\|N\|_1)$ calls to NotAbove $\Rightarrow O(\|N\|_1 \log (\|N\|_1))$ calls to InPlane.



Outline

Context and motivation

Plane-probing algorithms
Generalized Euclidean algorithm
Delaunay triangulation

Application to digital surfaces

A similar algorithm for a digital surface S

Input

- ▶ a predicate InSurface : $x \in S$?
- \triangleright a starting square face s in S

Additional constraints

find an origin and a basis from s

stop if non-planar configurations (parallelepiped/hexagon/rays)

A similar algorithm for a digital surface S

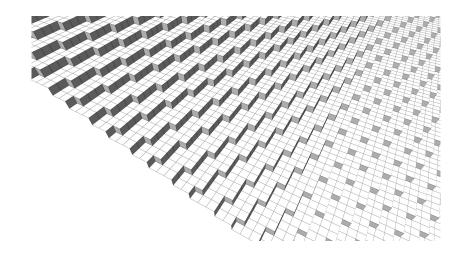
Input

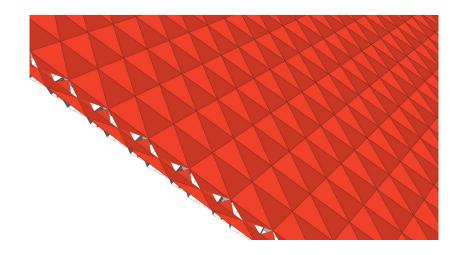
- ▶ a predicate InSurface : $x \in S$?
- \triangleright a starting square face s in S

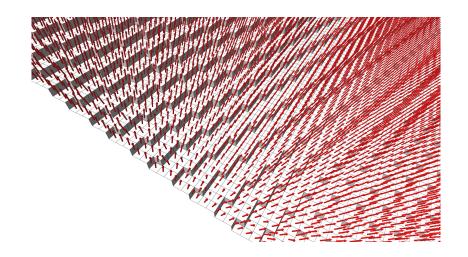
Additional constraints

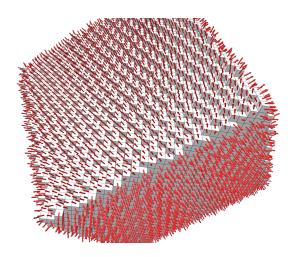
find an origin and a basis from s

stop if non-planar configurations (parallelepiped/hexagon/rays)

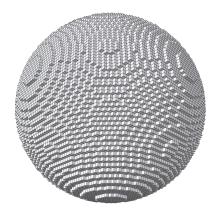




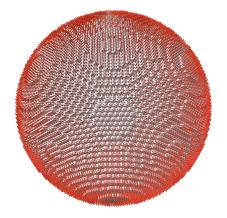




Example: convex shapes

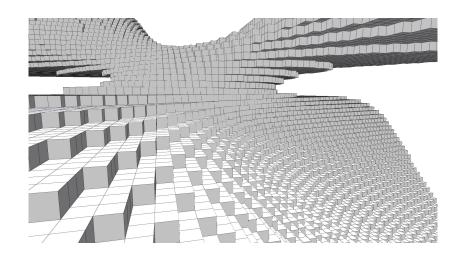


Example: convex shapes

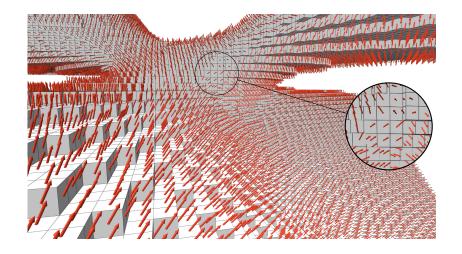


Example: convex shapes

Example: not convex shapes



Example: not convex shapes



Perspectives

Digital planes

▶ What piece of digital plane is enough to find N?

Digital surfaces

- try all candidates, obtuse triangles may be interesting
- perform a dense probing to process non-convex parts
- estimator: multigrid convergence, experimental comparison
- reconstruction: find of way of gluing triangles together

The end

My first answer:

