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Data

voxel sets in 3d digital images
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Digital surfaces

pros/cons

+ efficient spatial data structures
set operations (union, intersection, .. .)

+
+ integer-only, exact computations
+

— poor geometry
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Analysis of digital surfaces

» enhance the geometry by estimating normal vectors

= applications: measurements, deformation for simulation or
tracking, surface fairing, rendering...
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A lot of methods

fitting,

Voronoi diagram,
integral invariants,
convolution,

energy minimization,

probabilistic approaches,
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Flaw

Existing methods are not quite satisfactory
» parameter required (= width of a neighborhood)

> that parameter is hard to pick
> get decent estimates in flat/smooth parts
» preserve sharp features
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Challenge

Desiderata

» parameter-free method
> theoretical guarantees

» exact on flat parts
» converge on smooth parts as resolution increases

Key idea
» bound neighborhoods by their thickness instead of their width

» digitized planes have a thickness bounded by a small constant
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Plane-probing algorithms

Definition

Given a digitized plane P and a starting point p € P, a
plane-probing algorithm computes the normal vector of P by
sparsely probing it with the predicate “is x € P7".

H d R @ [LPR2017] J-O. L., X. P., T. R. Two Plane-Probing Algorithms for the
an Computation of the Normal Vector to a Digital Plane. J. Math. Imaging
Vis., 59(1):23-39, 2017.

R]_ @ [LR2019] T. R., J-O. L., An efficient and quasi linear worst-case time
algorithm for digital plane recognition, DGCI'19, LNCS, vol. 11414,
p.380-393, 2019.

PH PR PR]- @ [LMR2020] J-O. L., J. M., T. R. An Optimized Framework for
? ’
Plane-Probing Algorithms, J. Math. Imaging Vis., 62(5):718-736, 2020.

Implemented in [{ital (dgtal.org)
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dgtal.org

Outline

Plane-probing algorithms
Generalized Euclidean algorithm
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One of the oldest algorithms

Euclidean algorithm
Given a couple of integers,
> subtract the smaller from the larger one, and repeat

» until both numbers are equal.

Example
step |0 |12
a
b 8|/512(2]|1

w
w
—
—_

we focus on the sequence of subtractions, assume gcd (a, b) =1

10 / 41



One geometrical interpretation of the Euclidean algorithm

m1_(1,0), m1-N:a:3
=(0,1), my-N=b=38

11 / 41



One geometrical interpretation of the Euclidean algorithm

m1:(1,0), ml-N:a:3
m2:(*1,1), m2-N:b:5
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One geometrical interpretation of the Euclidean algorithm

m1:(3,—1), ml-N:azl
m2:(75,2), m2-N:b:1
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An algorithm to compute N

N is unknown, but a predicate IsBlack is given
IsBlack(m; — m3)? IsBlack(my — my)?
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Extension to 3d

No unique extension to the Euclidean algorithm!

Assuming0 <a<b<c:
» Brun: (a,b,c) — (a, b,c — b);

» Selmer. (a,b,c) — (a,b,c — a);

» Farey: (a,b,c) — (a,b— a,c);

» Fully-Subtractive: (a, b,c) — (a,b— a,c — a);
» Poincaré: (a,b,c) — (a,b— a,c — b).

> ...

Note: the same operation is done at each step
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A class of generalized Euclidean algorithms

Given three positive numbers (a, b, ¢), with ged (a, b,c) =1,

» while they are not all equal to 1,

» subtract from a number x € {a, b, ¢} a strictly smaller number

y €{a,b,c}, y < x.

Example
m]. - (17070)1
my = (0,1,0),
m3 = (0707 1)1

m1-N:a:1
m2-N:b:2
m3-N:CI3
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A class of generalized Euclidean algorithms

Given three positive numbers (a, b, ¢), with ged (a, b,c) =1,
» while they are not all equal to 1,

» subtract from a number x € {a, b, ¢} a strictly smaller number
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Example
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Digital plane

Let N € Z3® whose components (a, b, c) are coprime integers s.t.
0O<a<b<eg,

Pni={x€Z3]|0<x-N<I|N|}

P27 &

7
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Interpretation of a generalized Euclidean algorithm

Internals
» (my,ma, m3) = (e1,ez,e3), q:=(1,1,1) ¢ Py
= triangle (g — m1,q9 — ma,q — m3)
= hexagon {q+m; —m; | i,j €{1,2,3},i #j}
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= a plane-probing algorithm

M:={Pn|NeZ3\0}

Input
» P e I described by the predicate InPlane: “is x € P?”
» a starting point p s.t. InPlane(p), q :==p+(1,1,1)

Main trick
» Assume p-N =0 (= q-N=|N|1), where N, the normal of P
» InPlane(x) < (x —q) - N < 0.
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Properties of generalized Euclidean algorithms

At each step
P1 p and g both project into triangle (9 — m1,q — m2,q — m3)
along (1,1,1)

P2 matrix M := [m1, m2, m3] is unimodular, i.e. det(M) =1

Termination
» number of steps < ||N]|; — 3 (6 calls to InPlane per step)

» attheend, if p-N=0(=q-N=|N|1)
Vk € {1,2,3}, mg-N =1
= the normal of triangle (g — mi,q — ma,q —m3) is N

whichever the subtraction we choose
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Example

Digital plane of normal (5,2, 3)
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Example

Digital plane of normal (5,2, 3)
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Example

Digital plane of normal (5,2, 3)
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Example

Digital plane of normal (5,2, 3)
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Example

Digital plane of normal (5,2, 3)
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All possible final triangles

Digital plane of normal (2,3,5)
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About final triangles

> vertices € A= {x € Z3 | x-N = |N||; — 1}
» do not contain any other point of A (P2)
» projection of p along (1,1,1) (P1)

Digital plane of normal (2,2,5)
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Towards a selection criterion

» The Delaunay triangulation of A gives acute triangles

» p projects into one of them (if no co-circularity)

Digital plane of normal (2,2,5)
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Towards a selection criterion

» The Delaunay triangulation of A gives acute triangles

» p projects into one of them (if no co-circularity)

Digital plane of normal (2,2,5)
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Algorithm H (candidates in an hexagon)

At each step:
» consider a candidate set S
» filter S through InPlane

» pick a closest point s*:
the circumsphere of T U s*
doesn’t contain any other

» update T with this point

The last triangle is very often acute, but not always
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Algorithm R (candidates along rays)

A

v

» same algorithm as before, only S differs
» S is infinite but the filtering by InPlane gives a finite point set

» O(]IN]|1) steps, O(log(|IN|l1)) calls to InPlane per step
» the last triangle is always acute
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Example

Digital plane of normal (2,3,9)
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Algorithm R?

Features
» has the same output as R
» but O(||N]|1) calls to InPlane instead of O(||N|1 log ||N|1)

How?
1. local probing: 6 rays — at most 2 rays and 1 point
2. geometrical study: 2 rays — 1 ray and 1 point
3. efficient algorithm: 1 ray and 1 point — a closest point

26 / 41



Example

Digital plane of normal (67,1,91)
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Example

Digital plane of normal (1,73,100)
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Recap

Main features
» N from a point ps.t. p-N=0
» by sparse and local computations:
» p projects into all triangles

» with R and R?, the current triangle is acute every two steps,

always acute at the end

» O(|IN||1) calls to InPlane with H and R?,
O([IN[[1 log ([[Nl1)) with R

Drawbacks
1. do not retrieve N from any point

2. do not retrieve all triangles of the lattice A
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Problem #1: starting from any point

Input
» P of normal N
» InPlane: “is x € P?”

Equivalence used so far

» assume q - N = ||N||;
» InPlane(x) & (x —q)-N <0

Generalized equivalence
» assume q-N > ||N||;
» 3/ e Ns.t. InPlane(q+ /(x —q)) < (x —q) - N < 0.
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Predicate NotAbove

Data: InPlane, q and an integer L > 2||N||;

Input: A point x € Z3s.t. - N —|[N|; <x-N

Output: True iff (x —q) - N < 0 in O(log (L)) calls to InPlane
1 u<x—q;// direction

2 [+ 1;

3 while / < L do

4 if InPlane(q + /u) then return True ;

5 if InPlane(q — /u) then return False ;

6 | < 21;

7 return False;

u

P
X

A
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q

it is enough to use NotAbove instead of InPlane
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Problem #2: retrieving all triangles

Triangle — Parallelepiped
> top point g
» upper triangle (q — m1,q — mp,q — m3)
» lower triangle (@ — my — m3,q — m3 —my,q — m; — my)

» bottom point q — >, my
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Problem #2: retrieving all triangles

Triangle — Parallelepiped
> top point g
» upper triangle (@ — m1,q — m2,q — m3)
» lower triangle (g — my — m3,q — m3 — m;,q — m; — my)
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Staying close to the digital plane

Update rule
» when the parallelepiped has less than 4 vertices in P,
< the lower triangle is updated (bottom moves, not top)
> otherwise
< the upper triangle is updated (top moves, not bottom)

» invariant: at least one point in P (bottom), one not (top)

Generalized versions of H, R and R!
For each X € {H,R, R}, PX uses a parallelepiped and the above
update rule with NotAbove instead of InPlane.
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Recap

Main features
» N from any point p such that InPlane(p),
> all triangles of the lattice A = {x € Z3 | x-N = |[N||; — 1}

» PH and PR require O(||N||1) calls to NotAbove
= O(JIN]|1 log (|IN]|1)) calls to InPlane.
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Outline

Application to digital surfaces

35 / 41



A similar algorithm for a digital surface S

Input
» a predicate InSurface: xe€ S 7

> a starting square face s in S

Additional constraints
» find an origin and a basis from s

» stop if non-planar configurations (parallelepiped /hexagon /rays)

e [

36 / 41



A similar algorithm for a digital surface S

Input
» a predicate InSurface: xe€ S 7

> a starting square face s in S

Additional constraints
» find an origin and a basis from s

» stop if non-planar configurations (parallelepiped /hexagon /rays)

e [

36 / 41



Example: flat parts and sharp edges
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Example: flat parts and sharp edges
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Example: convex shapes
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Example: convex shapes
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Example: convex shapes
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not convex shapes

Example
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Example: not convex shapes
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Perspectives

Digital planes
» What piece of digital plane is enough to find N?

Digital surfaces

> try all candidates, obtuse triangles may be interesting
» perform a dense probing to process non-convex parts
> estimator: multigrid convergence, experimental comparison

» reconstruction: find of way of gluing triangles together
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The end

My first answer:

(b) wood (c) foam
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