Ber In

Computing Constrained Willmore Surfaces

Ulrich Pinkall Yousuf Soliman Felix Knöppel **Olga Diamanti Albert Chern** Peter Schröder

Werner Boy 1903:

First immersion

$$f: \mathbb{R}\mathrm{P}^2 \to \mathbb{R}^3$$

 $f\colon M \to \mathbb{R}^3$

is called a Willmore surface if it is a critical point of

Minimal surfaces in \mathbb{R}^3

Images by Oliver Gross

Minimal surfaces in S^3

Images by Nicholas Schmitt

Minimal surfaces in H^3

Images by Oliver Gross

Minimal surfaces in H^3

Images by Oliver Gross

A Riemann surface is defined as a 2-dimensional manifold Mtogether with an endomorphism field $J \in \Gamma End(TM)$ with

A Riemann surface has a canonical orientation and a canonical conformal structure, comprising those Riemannian metrics \langle , \rangle that satisfy

$J^2 = -I$

$\langle JX, JY \rangle = \langle X, Y \rangle$

Theorem (Garsia 1961): Every compact Riemann surface (M, J) admits a conformal immersion $f: M \to \mathbb{R}^3$

Problem: For each compact Riemann surface find a conformal immersion f that minimizes

 $W(f) = \int_{M} \dot{H}^2$

Critical points: Constrained Willmore surfaces

CMC surfaces in \mathbb{R}^3

Images by Nicholas Schmitt

CMC-1 surfaces in H^3

Image by Nicholas Schmitt

CMC-1 surfaces in H^3

CMC-1 surfaces in H^3

Image by Yousuf Soliman

CMC surfaces in S^3

Image by Nicholas Schmitt

Might be a minimizer of

$$W(f) = \int_{M} H^2$$

among all conformal immersions

$$f\colon M\to \mathbb{R}^3$$

 \mathcal{M}

$\mathcal{M} = \{ J \in \Gamma(\operatorname{End}(TM) \ J^2 = -1 \}$

$T_J \mathcal{M} = \{ \dot{J} \in \Gamma \text{End}(TM) \mid \dot{J}J = -J\dot{J} \}$

 $\mathcal{M}/_{\mathrm{Diff}_0(M)}$

 $T_{[J]}\left(\mathcal{M}/_{\mathrm{Diff}_0(M)}\right) = T_J\mathcal{M}/_{\{\mathcal{L}_X J \mid X \in \Gamma(TM)\}}$

an oriented surface

space of conformal structures on M

Teichmüller space of M

$T_{[J]}\left(\mathcal{M}/_{\mathrm{Diff}_0(M)}\right) = T_J\mathcal{M}/_{\{\mathcal{L}_X J \mid X \in \Gamma(TM)\}}$

 $T_{[J]}\left(\mathcal{M}/_{\mathrm{Diff}_{0}(M)}\right) = T_{J}\mathcal{M}/_{\{\mathcal{L}_{X}J \mid X \in \Gamma(TM)\}}$

Constraints on |J| give rise to Lagrange multipliers in the cotangent bundle of Teichmüller space:

 $T^*_{[J]}\left(\mathcal{M}/_{\mathrm{Diff}_0(M)}\right) = \left\{ q \in T^*_J \mathcal{M} \mid \langle q \mid \mathcal{L}_X J \rangle = 0 \right\}$

for all $X \in \Gamma(TM)$

is called a quadratic differential if for all $X \in T_p M$

q(JX, JX) = -q(X, X)

For a quadratic differential q and $J \in T_J \mathcal{M}$ we can define

$$\langle q \mid \dot{J} \rangle = \int_{M} \dot{(X, Y)}$$

Given J, a field $q \in \Gamma sym(TM)$ of symmetric bilinear forms

 $Y \mapsto q(JX, Y))$

$T_{I}^{*}\mathcal{M} = \{ \text{quadratic differentials } q \}$

and we can define

$T^*_{[J]}\left(\mathcal{M}/_{\mathrm{Diff}_0(M)}\right) = \left\{ q \in T^*_J \mathcal{M} \mid \begin{array}{c} \langle q \mid \mathcal{L}_X J \rangle = 0 \\ \\ \text{for all } X \in \Gamma(TM) \end{array} \right\}$

:= {holomorphic quadratic differentials}

A discrete metric prescribes a length

 $\ell_{ij} > 0$

for each edge $ij \in E$

Conformal factors

 e^{u_i}

at the vertices change the metric conformally to

$$\tilde{\ell}_{ij} = e^{\frac{u_i + u_j}{2}} \ell_{ij}$$

Möbius transformations change the discrete metric conformally

Suppose we work with some discrete version W of the Willmore functional whose gradient at each vertex $i \in V$ is given by a vector

 $(\operatorname{grad} W)_i \in \mathbb{R}^3$

In the smooth case, $\operatorname{grad} W$ would be the normal vector field

 $\operatorname{grad} W = \left(\left(\Delta H + 2H(H^2 - K) \right) \right) N$

Theorem: A discrete surface $i \mapsto f_i$ is constrained by the edges $ij \in E$ such that

Willmore if and only if there are numbers q_{ij} indexed

$$(f_{E})_{ij} = 0$$

 $(W)_{i} = \sum_{ij \in E} q_{ij} \frac{f_{j} - f_{i}}{|f_{j} - f_{i}|^{2}}$

No resistance to scaling

 $(\operatorname{grad} W)_i = \sum_{ij\in E} q_{ij} \frac{f_j - f_i}{|f_j - f_i|^2}$

$$q_{ij} = 0$$

 $\sum_{i \in F} q_{ij} = 0$ $ij \in E$

 $(\operatorname{grad} W)_i = \sum_{ij \in E} q_{ij} \frac{f_j - f_i}{|f_j - f_i|^2}$

If $f_i \in \mathbb{R}^2 \subset \mathbb{R}^3$ for all $i \in V$ then $(\operatorname{grad} W)_i = 0$

 $\sum q_{ij} = 0$ $ij \in E$

 $0 = \sum_{ij \in E} q_{ij} \frac{f_j - f_i}{|f_j - f_i|^2}$

 $\sum q_{ij} = 0$ $ij \in E$

says that $ij \mapsto q_{ij}$ is a discrete holomorphic quadratic differential (Lam 2016)

If $f_i \in \mathbb{R}^2 \subset \mathbb{R}^3$ for all $i \in V$ then $(\operatorname{grad} W)_i = 0$ and

 $0 = \sum_{ij \in E} q_{ij} \frac{f_j - f_i}{|f_j - f_i|^2}$

optimization called Competitive Gradient Descent

Inspired by game theory:

Player 1 cares about the conformality constraint Player 2 cares about Willmore minimisation

Our algorithm uses a recent new approach to constrained

Results: Tori near the Clifford torus

Equivariant constrained Willmore tori found by Heller and Ndiaye (Images by Nicholas Schmitt)

Minimizers found numerically by our algorithm (Images by Yousuf Soliman)

Incompatible with equivariance

Image by Yousuf Soliman

Twisting can stabilize thin tori

Image by Yousuf Soliman

Results: higher genus

Tori with a translational period

Point constraints

Prescribing the position $f(p_i)$ for finitely many points $p_1, \ldots, p_n \in M$ is a well-posed problem.

immersions $f: S^2 \to \mathbb{R}^3$ always leads to a round sphere.

Without conformality constraint, minimising W(f)while prescribing $f(p_1), f(p_2), f(p_3), f(p_4)$ for

One even can even prescribe the conformal factor e^{2u} at p_1, \ldots, p_n .

value problem.

CMC-1 spheres in H^3 solve such a boundary

Images by Nicholas Schmitt

Image by Nicholas Schmitt

Constraint Willmore with point constraints

Vaxman, Müller and Weber Canonical Möbius Subdivision

Constraint Willmore with point constraints

Thank You!

