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Wasserstein distance

I Let Probp(Rd) = {µ ∈ Prob(Rd) |
∫
‖x‖p dµ < +∞}.

p-Wasserstein distance between µ, ν ∈ Probp(Rd):

Wp(µ, ν) =
(
minγ∈Γ(µ,ν) ‖x− y‖p d γ(x, y)

)1/p
.

where Γ(µ, ν) = couplings between µ and ν ⊆ Prob(Rd × Rd).
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)1/p

ex. Wasserstein barycenter between µ1, . . . , µN with coefficients α1, . . . , αN ≥ 0:

I One can extend some usual statistical notions to the Wasserstein space:

bary((µi), (αi)) := arg minµ∈Prob(X)

∑
1≤i≤N αi W2

2(µ, µi).

but also: k-means algorithm, principal component analysis, etc.

The Wasserstein distances makes sense for data (point clouds, gray images, meshes)

which describe some distribution of mass, e.g. histograms.

[Agueh, Carlier ’10]
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1D Wasserstein space and Quantiles

I Given µ ∈ Prob(R), there exists a unique nondecreasing Tµ ∈ L1([0, 1])

satisfying Tµ#ρ = µ, with ρ = Lebesgue measure on [0, 1].

NB: Tµ#λ = µ ⇐⇒ ∀B ⊆ R, λ(T−1
µ (B)) = µ(B)

⇐⇒ ∀x ∈ R, T−1
µ (x) = λ([0, T−1

µ (x)]) = µ((−∞, x])
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Example: 1D Wasserstein barycenters

Proposition: The W2 barycenter of µ1, . . . , µN ∈ Prob2(R) and α1, . . . , αN ≥ 0 is

bary((µi), (αi)) =
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i αiTµi

)
#
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In 1D, computing a W2 barycenter between empirical measures

⇐⇒ sorting the positions of the Dirac masses + averaging !
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2. Linearized Wasserstein distance
[Wang, Slepcev, Basu, Ozolek, Rohde ’13]
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Motivation 1: Monge-Kantorovich Quantiles

I The map µ 7→ Tµ embeds isometrically in Probp(R) into Lp([0, 1]) .

I Given µ ∈ Prob(R), there exists a unique nondecreasing Tµ ∈ L1([0, 1])

satisfying Tµ#ρ = µ, with ρ = Lebesgue measure on [0, 1].
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Numerical Example: Monge-Kantorovich Depth
Source: ρ = uniform probability density on B(0, 1) ⊆ R2

Target: µ = 1
N

∑
1≤i≤N δyi with N = 104 points

”Monge-Kantorovich depth of yi” ' ‖T−1
µ (yi)‖.

[Cherzonukov, Galichon, Hallin, Henry]
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isovalues of MK depth
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Example: barycenter computation
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µ := arg min1≤i≤k
∑

1≤i≤k αi W2
2(µ, µi).

−→ Need to solve an optimisation problem every time the coefficients αi are changed.

I ”Linearized” Wasserstein barycenters: µ :=
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S3
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2. Known properties of µ 7→ Tµ.
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xθ 〈xθ|x〉 ≥ 0

xθ+π if not
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If Tµ is L-Lipschitz, then ‖Tµ − Tν‖22 ≤ C W1(µ, ν) with C = 4Ldiam(X).

[Ambrosio,Gigli ’09], see also [Berman ’18].

I No regularity assumption on ν −→ applicable in statistics and numerical analysis.

I The hypothesis that Tµ is Lipschitz is practically restricting:

1) it implies that spt(µ) is connected.

2) it can be proven only under very strong conditions on the data:

with Cα densities bounded from above and below, then Tµ is C1,α.

e.g. if ρ, µ are absolutely continuous on smooth uniformly convex sets,
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Global Hölder continuity

Theorem (Berman ’18): Assume that ρ is the Lebesgue measure on X, and

‖Tµ − Tν‖2L2(ρ) ≤ C W1(µ, ν)α with α = 1
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µ, ν ∈ Prob(Y ) with X convex compact and Y compact. Then,
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I The Hölder exponent is not tight, but the inequality holds without regularity

‖Tµ − Tν‖2L2(ρ) ≤ C W1(µ, ν)α with α = 1
2d−1(d+2)

µ, ν ∈ Prob(Y ) with X convex compact and Y compact. Then,

assumption on µ, ν!



15 - 3
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I The Hölder exponent is not tight, but the inequality holds without regularity

I Proof of Berman’s theorem relies on techniques from complex geometry, and in

‖Tµ − Tν‖2L2(ρ) ≤ C W1(µ, ν)α with α = 1
2d−1(d+2)

µ, ν ∈ Prob(Y ) with X convex compact and Y compact. Then,

assumption on µ, ν!

particular an inequality due to Blocki.

I By [Andoni, Naor, Neiman ’18], the space (Prob2(Rd),W2) does not admit a

bi-Hölder embedding into any Lp space when d ≥ 3.
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2. Global, dimension-independent,
Hölder-continuity of µ 7→ Tµ.
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[M., Delalande, Chazal ’19; Delalande, M. ’21]



17 - 2

Main theorem

Thm: Let X be convex compact and ρ a density on X with ‖ log(ρ)‖∞ < +∞
Let Y be compact. Then, ∀µ, ν ∈ Prob(Y ), ‖Tµ − Tν‖L2(X) ≤ C W2(µ, ν)1/6.

I First global and dimension-independent stability result for optimal transport maps.

[M., Delalande, Chazal ’19; Delalande, M. ’21]



17 - 3

Main theorem

Thm: Let X be convex compact and ρ a density on X with ‖ log(ρ)‖∞ < +∞
Let Y be compact. Then, ∀µ, ν ∈ Prob(Y ), ‖Tµ − Tν‖L2(X) ≤ C W2(µ, ν)1/6.

I Gap between lower-bound and upper bound for Hölder exponent: 1
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I Proof relies on the semidiscrete setting, i.e. the bound is established in the case

µ =
∑
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∑
i νiδyi .

and one concludes using a density argument.

I The constant C(X,Y ) . diam(X)d+1 diam(Y ).

The exponent 1
6 is probably not optimal...

I First global and dimension-independent stability result for optimal transport maps.
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Semidiscrete OT for c(x, y) = −〈x|y〉

I Let ρ, ν ∈ Probac
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Φ(ψ) :=
∑
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∫
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Hessian of Φ and strong convexity

Proposition: I If ρ ∈ C0(X) and (yi)1≤i≤N is generic, then Φ ∈ C2(RN ) and

∀i 6= j, ∂Gi
∂ψj

(ψ) = 1
‖yi−yj‖

∫
Γij(ψ)

ρ(x) dx where Γij = Vi(ψ) ∩ Vj(ψ).

∀i, ∂Gi
∂ψi

(ψ) = −
∑
j 6=i

∂Gi
∂ψj

(ψ)

y1

y2

y2

y4

y5

Γ
15 (ψ)

(Recall that Gi(ψ) =
∫
Vi(ψ)

d ρ, ∇Φ = −(G1, . . . , GN ), DG = −D2Φ)
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(Recall that Gi(ψ) =
∫
Vi(ψ)

d ρ, ∇Φ = −(G1, . . . , GN ), DG = −D2Φ)

(i, j) ∈ H ⇐⇒ Lij > 0

I Consider the matrix L = DG(ψ) and the graph H:

I If Ω is connected and ψ ∈ E, then H is connected

I L is the Laplacian of a connected graph =⇒ KerL = R · cst
Corollary: Global convergence of a damped Newton algorithm.

[Kitagawa, M., Thibert 16]

NB: if Vi(ψ) = ∅, then 1{yi} ∈ Ker(D2Φ(ψ))

Proof:

Proposition =⇒ local strong convexity of Φ, albeit non-quantitative.
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Proof ingredients

I Proof gives a better Hölder exponent ( 1
3 -Hölder) for µ 7→ φν (no upper bound).

Thm: Let X be convex compact and ρ a density on X with ‖ log(ρ)‖∞ < +∞
Let Y be compact. Then, ∀µ, ν ∈ Prob(Y ), ‖Tµ − Tν‖L2(X) ≤ C W2(µ, ν)1/6.

[M., Delalande, Chazal ’19; Delalande, M. ’21]
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3 -Hölder) for µ 7→ φν (no upper bound).

I Strategy of proof: let µk =
∑
i µ

k
i δyi for k ∈ {0, 1}, assume all µki > 0.

Consider ψk ∈ RY s.t. G(ψk) = µk, and ψt = ψ0 + tv with v = ψ1 − ψ0. Then,

〈µ1 − µ0|v〉 = 〈G(ψ1)−G(ψ0)|v〉 =
∫ 1

0
〈DG(ψt)v|v〉d t

a) Control of the eigengap: 〈DG(ψt)v|v〉 ≤ −C(X)‖v‖2L2(µt)
if
∫
v dµt = 0.

with µt = G(ψt) −→ [Eymard, Gallouët, Herbin ’00].
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I We lose a little in the exponent to control the difference between OT maps...

Combining a) and b) we get ‖ψ1 − ψ0‖2L2(µ0) . |〈µ
1 − µ0|ψ1 − ψ0〉|

≤ Lip(ψ1 − ψ0) W1(µ0, µ1)

.W2(µ0, µ1)
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The non-compact space

Theorem Let µ0, µ1 ∈ Prob2(Rd), φk the Brenier potential from ρ ∈ Probac(X)

to µk, where X is convex and ρ is bounded from above and below. Assume that

(i) ∀k ∈ {0, 1},∀x, y ∈ X, |φk(x)− φk(y)| ≤ CH‖x− y‖α

Then, W2(µ0, µ1) ≤ ‖Tµ1 − Tµ0‖L2(ρ) ≤ C(d,X, ρ, CH ,M) W1(µ0, µ1)
1

2(11−8α) .

(ii) M4(µk) ≤M .

[Delalande, M. 2021]
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k) =

∫
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∫
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I When α = 1, we recover the exponent of the compact case: 2(11− 8α) = 6.
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In particular, this result applies to sub-exponential or sub-Gaussian measures.

Mp(µ
k) =

∫
‖y‖p dµk(y) =

∫
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I By [Andoni, Naor, Neiman ’18], the space (Prob2(Rd),W2) does not admit a

bi-Hölder embedding into any Lp space when d ≥ 3.

[Delalande, M. 2021]
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Summary

Optimal transport plans can be used to embed of Prob2(Rd) into L2(ρ,Rd), while

preserving some of its metric geometry, with applications in data analysis.

https://github.com/sd-ot
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Summary

Open questions/current work:

Optimal transport plans can be used to embed of Prob2(Rd) into L2(ρ,Rd), while

preserving some of its metric geometry, with applications in data analysis.

Thank you for your attention!

I what happens for other cost functions?

I is there a bi-Hölder embedding of {µ ∈ Prob2(Rd) |M2(µ) ≤ R} into L2(ρ) ?

I optimal Hölder exponent for µ 7→ Tµ in the compact case?

https://github.com/sd-ot


