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Analysis and processing of 3D data

-3 CIvs
- Motivations
3D surface acquisition techniques are ubiquitous

Source:
Pleiades-

Cit
Y

Usages

m Visualization, metrology, simulation, fabrication, ...



Analysis and processing of 3D data

o
-1 Motivations

11 Acquired 3D surfaces are complex
= Complex geometry, multiple scales (far from base/relief)

m Massive amount of data (billions of points)
3

Subsampled: 500M
Original: 20 billions




Objectives
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-1 Characterizing and structuring raw data

1 Geometry




Objectives
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Characterizing and structuring raw data

Multi-scale data continuum

Continuum




Objectives
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Characterizing and structuring raw data

Interactive processing

Keep user in the loop
What is simple for users can be complex for computers

Characterizing properties of any sample
Users want to augment the data

Characterizing properties at any scale
Relevant structures can be at any scale

Be efficient
Robustness to acquisition artefacts and complexity

CIPFS
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- Limited expressiveness of analysis techniques

Local Global




SENEEN
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Definition of pertinent scale/structure

<€ — H l l H

Scale continuum

v

Question: how do we split this continuum, at which scales ?
Which shapes shall we consider ?



Research group

- ]
Nicolas Mellado - roint based analysis and processing

Loic Barthe- implicit representations, 3D modelling

1 Task force

Thibault Lejemble - rhp student (2017-2020)

Chems-Eddine Himeur - php student (2021-2024)
Sébastien EGNER - viaster 2 Intern (2021)

-1 Data provider and final user

U MS ArCheOV|S|0n Lalibela Churches
Ethiopy




Open-Science and tools

|
Open-source libraries
Point cloud analysis
3D-Engine
Point-based Deep-Learning library
Datasets
3D-Acquired Research Dataset

Acquisition devices

RGB-D Camera: Kinect v2
Solid-State Lidar: Intel L515, Ipad Pro

CIPFS


https://github.com/poncateam/ponca
https://github.com/STORM-IRIT/Radium-Engine
https://3dard.cnrs.fr/

Implicit Scale-Space
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Implicit Scale-Space
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Overall idea

See points as surface samples
Estimate and study the surface properties

Proposal
Use implicit surface reconstruction
Study differential properties

In space
In scale

CIPFS



Technical background

T s
o Implicit surfaces

o Isosurface of a scalar field S,

(X; Su(x) = 0)




Technical background

s oS
o Implicit surfaces

Isosurface of a scalar field S

(X; Su(x) = 0)

o Pro
Derivatives are meaningful, eg., VS,~ normal vector
Projection

1 Cons

No explicit definition -> marching cubes
No surface metric -> local estimation knn graph



Technical background
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Implicit surface reconstruction
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Moving Least Squares
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THE APPROXIMATION POWER OF MOVING LEAST-SQUARES

DAVID LEVIN

hod for near-best approximations to functionals on

thod, presented by the Back
hod works very well for interpolation, smootl
derivatives’ approximations. For the interpolation probler t
ethod. The method

rror of a local best polynomial approximation.
= f

is bounded in terms of the er
tion, and an

The interpolation approximation in IR
approximation order result is proven for qu

1. INTRODUCTION

J € F where F is a normed functi
set, where {L;}/_, are bounded lin

of basis fi ions, s, or radia
Then we find an approximation f to f from span{@}, and apprc
L(f) by L(J). If the approximation process is linear, the final approximation can

I

L =L = Y aLi(h) y

L) =Y alip)=p, peP
=
s functions {¢} C F are locally supported and P = 1,5, it can be
shown, in many problems, that the resulting approximation is O(h™*), where h is
a local data parameter. Another way of analyzing the approximation error follows
directly from the representation (1.1):
Let 0 be the support of the functional L, ie. L(g)
ishing on €9, and let ©; denote the support of Y>1_, a;L;. Also let p be the best
approximation to f from the set P on © = QU 2,

Eop(f)=f —pllo= inf |If —dllo
4P

0 for all g van-

(1.3)

1991 Mathematics Subject Classification. Primary 41A45; Secondary 41A
1

anw
e .,
. .

CIrs



Technical background
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Implicit surface reconstruction

Moving Least Squares
Algebraic Point Set Surfaces

arg min ) wi(©)I7Su(a,) - nlP
u l

1 Uc
Sy(x) = ul [ X ], with u = [“n]
¢ Uq

Cf|]FS




Technical background
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-1 Scale-Space

Sparse analysis
Built on signal %
parameterization




Local analysis: pertinent scale extraction
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Proposal: measure pertinence as stability in scale-space

[CGF'12]



Local analysis: pertinent scale extraction
] onrs

-1 Proposal: measure pertinence as stability in scale-space
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Local analysis: pertinent scale extraction
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Base/relief decomposition p

[CGF’14]
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Global analysis: planar primitive extraction
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Spatially regularize the analysis

00000020002000202000200020200020002000:



Global analysis: planar primitive extraction
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Spatially regularize the analysis

(a)
% Stability in space: segmentation

(©)
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Global analysis: planar primitive extraction
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Features defined using topological persistence

[ITII;




Global analysis: planar primitive extraction
25 | cr‘lrs

Various shape exploration tools




Deep learning: classification in scale-space
26| cr|1rs
Problem: unstructured point clouds do not fit
standard network architectures (e.g., CNN)
Sampling variation
Lack of parameterization
Permutations of points

SOTA:
Project on standard convolution kernel
Analyse knn graph / patches



Deep learning: classification in scale-space
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Problem: unstructured point clouds do not fit
standard network architectures (e.g., CNN)
Sampling variation
Lack of parameterization
Permutations of points

ldea: use scale-space slice as raw feature vector




Deep learning: classification in scale-space
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Neural networks for multi-scale edge classification in 3D point cloud

Chems Eddine Himeur 1

1 : Institute de recherche en informatique de Toulouse (IRIT)
Université Toulouse III - Paul Sabatier

Point clouds are unstructured clusters of data representing geometries. Point cloud analysis is a challenging field, especially challenging for use of
neural networks. In this presentation I will explore point cloud analysis using neural networks, and the combination between scale-space analysis and
neural network classifier, to make a robust and fast edge detection network for point cloud labeling.

Teaser:

_Learn and classify at interactive rates
Requires very small data and computational power

Produce better classification than state of the art



Take home message
2 | s
Implicit Scale-Space
bring ideas from scale-space analysis,

to unstructured point-based data,
using implicit surface representation

Expectations
Define reliable, fast and robust analysis and processing tools
For complex shapes
Represented as massive point-clouds

What’s next ?

Improve estimators: convergence guaranties, evaluation speed
Improve evaluation scheme on real data


https://3dard.cnrs.fr/
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