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Motivation

Many physical systems or engineering models involve interfaces which tend to
minimize a geometric energy, involving either the area or the curvatures of
interfaces (under various constraints)

We are interested in the numerical simulation of such systems.



Examples: Wetting

Droplet wetting on a lotus leaf
(energy = area)



Bubbles

Bubbles Soap foam

(energy = multiphase area)



Honeycomb

Honeycomb
(energy = 2D multiphase perimeter)



Polycrystalline materials

Silicon Polycrystalline material

(energy=multiphase inhomogenous area)

E (Σ1, . . . ,ΣN) =
1
2

N∑
i,j=1

σi,j Area(∂Σi ∩ ∂Σj) (σi,j are surface tensions)



Nanowires

Nanowires
(energy = multiphase anisotropic area)



Lipid bilayer

Blood cell

(energy = Helfrich energy
∫

(
κ

2
(H − H0)2 + κGK )dσ)

with H = mean curvature, H0 = spontaneous curvature and
K = Gaussian curvature

W (S) =

∫
H2dσ (−

∫
Kdσ) is the Willmore energy.



Magnetic Resonance Imaging (MRI)
Problem: find a volume containing given slices and having boundary of minimal
energy (area or Willmore)



3D reconstruction from 2D slices

Reconstruction of a 3D brain image from real MRI slices



3D reconstruction from 2D slices



Smoothing of a digital shape using the Willmore energy



How to approximate the minimizers?
Pick a representation of the surface:

Parametric "continuous" surface or graph surface
Level set
Phase field approximation

and try to minimize the energy, or an approximation of it using either:
graph methods (e.g, min flow/max cut)
a static Euler equation
a time-dependent Euler equation

This talk focuses on phase field approximation and time-dependent Euler
equations, and is motivated by the following issue: can we efficiently minimize
while avoiding undesirable topology changes as the surface evolves?



Phase field approximation

A phase field uε : Rd → [0, 1] is a smooth function which approximates the
characteristic function 1E of a set E .

The set {uε = 1
2} is an approximation of the boundary ∂E .

The area of ∂E is the perimeter of E .



Perimeter approximation

Thus,
∫
ε|∇uε|2dx ≈

1
ε
Area ≈ 1

ε
εP(E ) = P(E ) as ε→ 0.

Minimizing
∫
ε|∇uε|2dx is not a good idea: any constant function has zero

energy...

How to constrain minimizers to be close to a characteristic function?



Perimeter approximation

Use a double-well potential, for instance G (s) = 1
2 s

2(1− s)2.

0 1

G

If sup
ε

(∫
1
ε
G (uε)dx

)
< +∞ then uε → 0 or 1 a.e. as ε→ 0, i.e. uε

approximates a characteristic function.



The Cahn-Hilliard functional

(Van der Waals)-Cahn-Hilliard energy
The phase-field approximation of perimeter is

Pε(u) =

∫ (
ε

2
|∇u|2 +

1
ε
G (u)

)
dx

E
1E

E
uε

ε

where G is a double-well potential.

0 1

G e.g.,

G (s) =
1
2
s2(1− s)2



Phase-field approximation of perimeter

Convergence of Pε (Modica, Mortola - 1977)

Pε Γ-converges to

P(u) =

{
λP(E ) si u = 1E ∈ BV
+∞ otherwise

where λ = cst depends only on potential G .

Γ-convergence and minimizers
Let (Fn) equicoercive, Γ-converging to F . If, ∀n, un is a minimizer of Fn, then
every cluster point u of (un) is a minimizer of F and F (u) = limFn(un).



Optimal profile

The phase-field optimal profile associated with E and P(E ) is:

uε(x) = q

(
ds(x ,E )

ε

)
with q(s) =

1
2

(1− tanh(
s

2
))

1

0

q Signed distance
ds(x ,E ) = d(x ,E )− d(x ,RN r E )

where q = argminϕ{
∫
R

[
|ϕ′(t)|2

2
+ G (ϕ(t))]dt, ϕ(−∞) = 1, ϕ(∞) = 0}

Convergences
For a bounded set E

uε → 1E

Pε(uε)→ λP(E ) if E has finite perimeter
as ε→ 0.



Phase field approximation of the Willmore energy

The L2-gradient of Pε satisfies

−∇L2Pε(u) = ε∆u − 1
ε
G ′(u).

The gradient flow of perimeter is the mean curvature flow and −∇L2Pε(uε)
approximates the mean curvature of ∂E in the transition zone of uε when
uε ≈ 1E .

Approximation of the Willmore energy
In R2 and R3, the energy

u 7→ Pε(u) + Wε(u) = Pε(u) +

∫
1
2ε

(
ε∆u − 1

ε
G ′(u)

)2

dx

Γ-converges to E 7→ λ(P(E ) + W (E )) if E is C 2 and compact

De Giorgi + Bellettini, Paolini (1993) + Röger, Schätzle (2006)



Optimal profile

With the same phase-field profile associated with E

uε(x) = q

(
1
ε
ds(x ,E )

)
one has

Convergences
For a bounded set E

uε → 1E

Pε(uε)→ λP(E ) if E has finite perimeter
Wε(uε)→ λW (E ) if ∂E is C 2

as ε→ 0.



Phase field mean curvature flow: numerical approximation
The L2−gradient flow of the Cahn-Hilliard energy gives the time-dependent
Allen-Cahn equation

ut = ∆u − 1
ε2

G ′(u)

Given a time-step δt , solutions can be numerically approximated with the scheme

un+1 − un

δt
= ∆un+1 − 1

ε2
G ′(un+1)

un+1 can be computed using Picard iterations to find fixed points of the map
v 7→ (Id − δt∆)−1

(
un − δt

ε2G
′(v)

)
Implementation with
Fourier series and
periodic boundary condi-
tions, which guarantee a
high spatial accuracy.



Phase field Willmore flow: numerical approximation
The classical phase field Willmore flow is{

∂tu = ∆v − 1
ε2G

′′(u)v

v = 1
ε2G

′(u)−∆u.

Implicit discretization in time{
un+1 = δt

[
∆vn+1 − 1

ε2G
′′(un+1)vn+1

]
+ un

vn+1 = 1
ε2G

′(un+1)−∆un+1,

Use Picard iterations for approximating a fixed point of:(
u
v

)
=

(
Id −δt∆
∆ Id

)−1(
un − δt

ε2G
′′(u)v

1
ε2G

′(u)

)
Implement it with Fourier series in space.
Stability :

δt ≤ C min
{
ε4, δ2xε

2} .



Phase field Willmore flow

∂tu = −∆

(
∆u − 1

ε2
G ′(u)

)
+

1
ε2

G ′′(u)

(
∆u − 1

ε2
G ′(u)

)
,



Phase field Willmore flow

∂tu = −∆

(
∆u − 1

ε2
G ′(u)

)
+

1
ε2

G ′′(u)

(
∆u − 1

ε2
G ′(u)

)
,



Phase field Willmore flow

∂tu = −∆

(
∆u − 1

ε2
G ′(u)

)
+

1
ε2

G ′′(u)

(
∆u − 1

ε2
G ′(u)

)
,

Lawson-Kusner surface of genus 4



Key aspects of phase field approximation

Replace singular energies with smooth energies
Γ-convergence can be proven

1 for area: Modica-Mortola’77
2 for Willmore 2D, 3D: De Giorgi’91 Bellettini-Paolini’93, Röger-Schätzle’06,

Nagase-Tonegawa’07

Smooth minimizers approximate sharp minimizers
Efficient numerical schemes can be designed
Do phase field flows approximate sharp flows? (as long as they are smooth)

1 for area: well-posedness, convergence −→ YES [Chen’92, de
Mottini-Schatzman’95, Bellettini-Paolini’95]

2 for Willmore:
F well-posedness (YES [Colli-Laurençot’12], [Bretin-Huang-M.’19]),
F convergence (formally YES [Loreti-March’00, Bretin-M.-Oudet’17],

rigorously YES [Fei-Liu’19])
Willmore flow: Vn = ∆SH + |A|2H − 1

2H
3 where |A|2 =

∑
κ2
i .



Issue: the classical phase field Willmore flow may develop
undesirable singularities



The classical phase field Willmore flow may develop
undesirable singularities



The classical phase field Willmore flow may develop
undesirable singularities

Such configuration has infinite relaxed Willmore energy

W(Ω) = inf{lim infW(Ωh), ∂Ωh ∈ C2, Ωh → Ω in L1(Ω)}.

If W(E ) < +∞, then a non-oriented tangent must exist everywhere on the
boundary of E , [Bellettini-Dal Maso-Paolini’93], [Bellettini-Mugnai’04]



Explanation: existence of smooth Allen-Cahn solutions with
singular nodal set

Existence of smooth solutions [Dang Fife Peletier 92],[Kowalczyk Pacard
2012] to the Allen-Cahn equation

∆uε −
1
ε2

G ′(uε) = 0,

such that uε → χE with W(E ) = +∞
Example of Allen-Cahn solutions



Mugnai’s approximation of the Willmore energy in 2D

Let A = second fundamental form

• In 2D, H2 = ‖A‖2

• if uε = q
(

dist(x,Ω)
ε

)
, then

1
ε

∣∣∣∣ε∇2uε −
1
ε
G ′(uε)

∇uε
|∇uε|

⊗ ∇uε
|∇uε|

∣∣∣∣2 = |∇2 dist(x ,Ω)|2 1
ε
q′
(

dist(x ,Ω)

ε

)2

−→ ‖A(x)‖2cGHN−1 ∂Ω as ε→ 0

Definition (Mugnai’s approximation in 2D)

WM
ε (u) =

1
2ε

∫ ∣∣∣∣ε∇2u − 1
ε
G ′(u)

∇u
|∇u|

⊗ ∇u
|∇u|

∣∣∣∣2 dx



Gradient flow

Energy

WM
ε (u) =

1
2ε

∫ ∣∣∣∣ε∇2u − 1
ε
G ′(u)

∇u
|∇u|

⊗ ∇u
|∇u|

∣∣∣∣2 dx .
Its L2–gradient flow is{

ε2∂tu = ∆ψ − 1
ε2G

′′(u)v + G ′(u)B(u)

v = G ′(u)− ε2∆u,

where

B(u) = div
(

div
(
∇u
|∇u|

)
∇u
|∇u|

)
− div

(
∇
(
∇u
|∇u|

)
∇u
|∇u|

)
.

Well-posedness and existence at fixed parameter ε? Requires presumably a
regularization of B(u) (which is done in practice numerically).



Formal asymptotic expansion in the smooth case

Formal expansionuε(x , t) ' q
(

d(x,Ωε(t))
ε

)
+ ε2 A2

2 η1

(
d(x,Ωε(t)

ε

)
vε(x , t) ' −εHq′

(
d(x,Ωε(t)

ε

)
+ ε2A2η2

(
d(x,Ωε(t)

ε

)
,

Front speed:

V ε = ∆SH + III 3 − 1
2
H|A|2 + O(ε),

with III 3 =
∑
κ3
i .

It coincides with the Willmore flow in dimensions 2, 3, as long as it is smooth.



A self-avoiding approximate Willmore flow



A self-avoiding approximate Willmore flow



About the reaction term B(u)

Lemma
Let u ∈ C2 with ∇u 6= 0. Consider the normal field n = ∇u

|∇u| . Then:

B(u) = div(div(n)n)− div((∇n)n) = 2
∑

1≤i,j≤N

(
∂ni
∂xi

∂ni
∂xj
− ∂nj

∂xi
∂ni
∂xj

)
.

In particular, when N = 2, B(u) = 2 det(∇n) = 0 (because ‖n‖ = 1).

What happens when the normal field n is less regular? Numerical simulations
show that B(u) charges singular sets of n, more precisely:

singular sets of dimension 0,
but also sets of dimension > 0, however inconsistently (depends on the
boundary configuration, on the regularization kernel, etc.)

Can we use the simpler term det(∇n) in all dimensions to charge singular sets
consistently?

No: Brézis-Coron-Lieb proved that the distributional Jacobian of
n ∈W 1,N−1(RN ,SN−1) is a weighted sum of Dirac masses, i.e. charges only sets
of dimension 0.

Can we design a more consistent term for charging the singular sets of n?



Remark: mean curvature flow with a forcing term

Consider the Allen-Cahn equation with an additional forcing term

∂tu
ε = ∆uε − G ′(uε)

ε2
(1 + f σ)

The speed of the limit sharp interface is:

V = H +
∇f σ · n
2(1 + f σ)

Can we design f σ to impose a distance δ between the interface and its
skeleton to prevent topology changes?



Examples of sets and their skeletons

Skeleton = singular set of the signed distance function, i.e. where it is not
differentiable.

Some sets...
E
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and the support of their skeletons
Sn

σ
 with σ = 0.005
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Localization of the skeleton of a set E using a jump term
A normal vector field associated with the signed distance function dist(·,E ) is

n = ∇ dist(·,E )

n satisfies ‖n‖ = 1 thus

∂n‖n‖2 = 2(∇n n) · n = 0,

where it is smooth.
Let k ∈ C∞c (Ω) denote a smooth kernel such that

∫
Ω
k = 1, let σ > 0,

kσ =
1
σN

k
( ·
σ

)
and

nσ = kσ ∗ n

Define the (regularized) jump term Snσ of n as

Snσ = 〈nσ, (∇nσ)nσ〉 =
∑

1≤i,j≤N

nσi (∂jn
σ
i )nσj

limσ→0 Sn
σ → 0 where n is smooth.

What happens when n is not smooth? Does limσ→0 Sn
σ charge the

singularities of n, i.e. the skeleton?



Limit of the regularized jump term
SBV = space of special functions of bounded variation (e.g., the characteristic
function of a set of finite perimeter)

Theorem
Let n ∈ SBV (RN ,SN−1) with C 1 discontinuity set Σ oriented by the unit normal
vector ν. Then

Snσ → 1
12
|[n]|2〈[n], ν〉HN−1 Σ in D ′(Ω) as σ → 0, (1)

where [n] denotes the jump of n.

E
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Conjecture

The asymptotic analysis of various configurations leads to the conjecture:

Snσ ∼
N−1∑
j=0

σjαjHN−1−j
|Σj

where
αj are density functions;
Σj are (N − 1− j)-dimensional sets;

the discontinuity set of n satisfies Σ(n) =
⋃
j

Σj



Allen-Cahn equation with topology penalization

Consider the Allen-Cahn equation with an additional jump term :

∂tu
ε = ∆uε − G ′(uε)

ε2
(1 + f σuε),

where
f σuε = c(kσ ∗ |Snσuε |), and nσuε = kσ ∗ ∇u

ε

|∇uε|
.

Numerical scheme: use a quasi-static approach. Define un+1 = v(·, δt) with
v a solution to {

∂tv = ∆v − G ′(v)
ε2 (1 + f σun)

v(·, 0) = un



Numerical experiments: the dumbbell

Without jump term:

With jump term:



Numerical experiments: the circle case

Numerical experiment:
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Formal analysis of the velocity:

V =
R

δ2

1− 1√
1− δ2

R2

 n(s) ' − 1
2R

(
1 + O

(
δ2

R2

))
n,



Numerical experiments: evolution of filaments

Case of one simple filament:

Case of two connected filaments:

⇒ Mean curvature flow of codimension 2?



Numerical experiments: evolution of a filament (1)



Evolution of a filament (2)



Evolution of a filament (3) using reduced constraints



Application to the Steiner’s problem

Steiner’s problem: find, for a given collection of points x0, · · · , xN , a compact
connected set K containing all the xi ’s and having minimal length.

X
0

X
1

X
2

X
3

K

Some phase field models have been recently introduced to approximate solutions
to Steiner’s or Plateau’s problems
[Bonnivard-Lemenant-Santambrogio],[Chambolle-Ferrari-Merlet],
[Bonafini-Orlandi-Oudet], [Bonnivard-Bretin-Lemenant]



Application to Steiner’s problem

Let Kσ = K ⊕ Bσ be a σ-thickening of K .

The length of K is approximated by the perimeter of Kσ :

Per(Kσ) ' 2πσH1(K ).

The property that K contains all points xi is replaced by the inclusion
constraint

∪Ni=1B(xi , σ) ⊂ Kσ,

Consider the optimization problem:

min
{

Per(Kσ), Kσ connected, σ-thick, and ∪Ni=1 B(xi , σ) ⊂ Kσ
}
.



Application to Steiner’s problem

• Use the phase field mean curvature flow with the self-avoiding term.

• Define
uεin(x) = q

(
dist(x ,∪Ni=1{xi})− σ

ε

)
,

where q is the classical profile associated to the double well G .

The inclusion constraint of all x ′i s is easily obtained by considering the inequality
constraint

uεin ≤ u.



Numerical Steiner set (1) : vertices of a cube



Numerical Steiner set (2) : 50 random points



Soap films: Plateau’s problem



Application to Plateau’s problem

Use a σ-tubular thickening of the boundary Γ

Γσ := {x , dist(x , Γ) ≤ σ} ,

Requires an additional volume penalization term.

Consider the optimization problem:

min
{

Per(Eσ) +
c

σ
Vol(Eσ), Eσ connected, σ-thick, and Γσ ⊂ Eσ

}
.



Numerical experiments: influence of the initial set



Case of non oriented surfaces and triple line junction



A hybrid minimal "surface"...



Conclusion

We introduced a reaction term which promotes topology conservation for phase
field approximations of some geometric flows in various dimensions and
codimensions.

This reaction term is introduced in the context of phase field approximation, but
it can be easily extended to:

Level set methods or volume graph methods involving the signed distance
function;
Recent methods for shape representation using a neural network which learns
the signed distance function, see e.g. DeepSDF (Park et al’19).


