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An elevator pitch

“Many important optimization problems arising in image
processing and computer vision, that we normally consider
computationally infeasible to solve, can be solved efficiently if we
use the L∞-norm instead of other commonly used norms.”



Optimization problems in image processing

I Many fundamental problems in image processing and
computer vision, such as image filtering, segmentation,
registration, and stereo vision, can naturally be formulated as
optimization problems.

I Often, these optimization problems can be described as
labeling problems, in which we wish to assign to each image
element (pixel) an element from some finite set of labels.



Optimization problems in image processing

We seek a label assignment configuration x that minimizes a given
objective function E , which in the “canonical” case can be written
as follows:

E (x) =
∑
i∈V

φi (xi ) +
∑
i ,j∈E

φij(xi , xj) , (1)

where:

I V is the set of pixels in the image.

I E is the set of all adjacent pairs of pixels in the image.

I xi denotes the label of vertex i , belonging to a finite set of
integers {0, 1 . . . ,K − 1}.



Data and regularization terms

I The functions φi (·) are referred to as unary terms. Each unary
term depends only on the label xi assigned to the pixel i , and
they are used to indicate the preference of an individual pixel
to be assigned each particular label.

I The functions φij(·, ·) are referred to as pairwise terms. Each
such function depends on the labels assigned to two pixels
simultaneously, and thus introduces a dependency between
the labels of different pixels. Typically, these terms express
that the desired solution should have some degree of
smoothness, or regularity.

E (x) =
∑
i∈V

φi (xi ) +
∑
i ,j∈E

φij(xi , xj) (2)



This is a hard problem!

I Images of interest have thousands or millions of elements.

I If we only have a unary term, we can trivially assign the best
label to each pixel independently.

I Through the pairwise terms, the labels assigned to these
pixels become interdependent. This makes the problem much
more interesting, but also much harder.

I In fact, finding a globally optimal solution to the labeling
problem described above is NP-hard in the general case.



Optimization by minimal graph cuts

I In the general case, global optimization of this labeling
problem is NP-hard, but in special cases globally optimal
solutions can be found efficiently.

I For the binary labeling problem, with K = 2, a globally
optimal solution can be computed by solving a
max-flow/min-cut problem on a suitably constructed graph.
This requires all pairwise terms to be submodular (≈ convex).

I A pairwise term φij is said to be submodular if

φij(0, 0) + φij(1, 1) ≤ φij(0, 1) + φij(1, 0) . (3)



Multi-label problems

I At first glance, the restriction to binary labeling may appear
very limiting.

I The multi-label problem can, however, be reduced to a
sequence of binary valued labeling problems using, e.g., the
expansion move algorithm (Boykov et al. 2001, Kolmogorov
et al. 2004)

I Thus, the ability to find optimal solutions for problems with
two labels has high relevance also for the multi-label case.

I These approaches have been very succesful, and have made
graph cuts a standard tool for solving general optimization
problem in image processing.



Generalized objective functions

Looking again at the labeling problem described above, we can
view the objective function E as consisting of two parts:

I A local error measure, in our case defined by the unary and
pairwise terms.

I A global error measure, aggregating the local errors into a
final score. In the case of E , the global error measure is
obtained by summing all the local error measures.

E (x) =
∑
i∈V

φi (xi ) +
∑
i ,j∈E

φij(xi , xj) (4)



lp-norm objective functions

If we assume all terms to be non-negative, minimizing E can be
seen as minimizing the l1-norm of the vector containing all unary
and pairwise terms. A natural generalization is to consider
minimization of arbitrary lp-norms, p ≥ 1, i.e., minimizing:

Ep(x) =

∑
i∈V

φpi (xi ) +
∑
i ,j∈E

φpij(xi , xj)

1/p

(5)



Minimizing Lp-norm objective functions via grah cuts

I It is straightfoward to show that similar submodularity
requirements hold also for the generalized objective functions
Ep for any finite p.

(φpst(0, 0) + φpst(1, 1))1/p ≤ (φpst(0, 1) + φpst(1, 0))1/p. (6)

I To use the graph cut approach, we must first verify that all
pairwise terms satisfy the appropriate submodularity
conditions. Otherwise, we have to resort to approximate
methods.



What is the effect of p?

I The value p can be seen as a parameter controlling the
balance between minimizing the overall cost versus minimizing
the magnitude of the individual terms.

I For p = 1, the optimal labeling may contain (few) arbitrarily
large individual terms as long as the sum of the terms is small.

I As p increases, a larger penalty is assigned to solutions
containing large individual terms. This forces local errors to
be distributed more evenly across the image domain.



Letting p go to ∞

As p approaches infinity, the objective function approaches the
∞-norm, or max-norm, of the local errors:

E∞(x) = max
{

max
i∈V

φi (xi ), max
{i ,j}∈E

φij(xi , xj)
}
. (7)

In this case, the global error is completely determined by the
largest local error. Intuitively, this means that the local errors are
distributed as evenly as possible across the image domain.



Letting p go to ∞ – a toy example

Figure 1: Left: L2.norm, Right: L∞-norm.



A quite remarkable result

I We have shown that in the limit as p goes to infinity, the
requirement for submodularity of the pairwise terms
disappears!

I Thus, even when the local costs are such that the problem of
minimizing Ep is NP-hard for some or all finite p, a labeling
minimizing E∞ can be found in low order polynomial time!
(In practice: linearithmic)



Direct optimization of max-norm problems

I In two recent papers, we present two different algorithms for
optimizing binary labeling problems with the max-norm E∞
objective function:
I A linearithmic time algorithm for optimizing E∞ under the

condition that all pairwise terms are ∞-submodular.
I An algorithm for optimizing any function E∞, submodular or

not. The theoretical runtime for this algorithm is quadratic,
but empirically it is also linearithmic.

I A pairwise term is said to be ∞-submodular if:

max{φij(0, 0), φij(1, 1)} ≤ max{φij(1, 0), φij(0, 1)}. (8)



Outline of our proposed algorithms

I To describe the optimization methods, we introduce the
notion of unary and binary solution atoms.

I A unary atom represents one possible label configuration for a
single vertex.

I A binary atom represent a possible label configuration for a
pair of adjacent vertices.

I Thus, for a binary labeling problem, there are two unary
atoms associated with every pixel and four binary atoms for
every pair of adjacent pixels.

I Each atom has a weight given by the corresponding unary or
binary term of the objective function.



Outline of our proposed algorithm

The algorithm works as follows:

I Start with a set S consisting of all possible atoms.
I For each atom A, in order of decreasing weight:

I If S \ {A} is consistent, remove A from S .

A set of atoms is said to be consistent if it is possible to construct
at least one valid labeling from the atoms in the set.
At the termination of this algorithm, the atoms remaining in S
define a unique labeling. This labeling is globally optimal according
to the objective function E∞.



Checking consistency

The key issue is to determine, at each step of the algorithm,
whether the remaining set of atoms is consistent.

I When the all pairwise terms are ∞-submodular, we show that
this check can be performed efficiently via “local” conditions.
This leads to the pseudo-linear algorithm.

I In the general case, we show that the problem of determining
the consistency can be phrased as a boolean 2-satisfiability
problem, solvable in linear time. This leads to the quadratic
algorithm.



The 2-SAT problem

I Consider a set of boolean variables (true or false) and a set of
constraints on these variables, such that each constraint
involves at most two variables. The 2-SAT problem consists of
answering the question: Is there an assignment of truth values
(i.e.,0 or 1) to the variables that satisfies all given constraints?

I Solvable in linear time using e.g., Aspvall’s algorithm.



An efficient version of the general algorithm
I Running Aspvall’s algorithm for every atom we want to

remove is inefficient.

I Each satisfiability problem, however, is very similar to the
previous one. We have found a way to utilize this redundancy
to formulate a practically efficient algorithm!
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Strict/lexicographical optimization

I A potential drawback of the L∞-norm is that it does not
distinguish between solutions with high or low errors below
the maximum error. This may be resolved by the notion of
stricit optimizers.

I Two solutions are compared by ordering all elements
non-increasingly by their local error value, and then
performing a lexicographical comparison. A solution is a strict
optimizer if it is better than or equal to any other solution
according to this comparison.

I Any strict minimizer is also an L∞-optimal solution. The
limit, as p →∞, of Lp-norm minimizers is not only an
L∞-minimizer but also a strict minimizer.

I We have shown that, under certain conditions, our algorithms
produce strictly optimal solutions.



Conclusions

I Optimization problems, specifically pixel labeling problems,
are frequently occuring in image processing applications.

I We are specifically interested in problems where the objective
function is given by the max-norm of the local errors.

I Many important optimization problems that are NP-hard
under other p-norms can be solved very efficiently under the
max-norm!



Thank you for your attention!
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