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Image Vectorization, Zooming and Pixel Art Depixelizing

Method Photo Quant.
image Math. model Sample Min-max

Image zooming ⇒ non editable raster image
Interpolation fair smooth C k fcts yes yes/no
Reprojection good bad variational no no

CNN good bad learning no no

Image vectorization ⇒ editable vector image
levelsets fair/bad good contour no yes
Delaunay fair/bad good geometry no yes

Pixel art depixelizing ⇒ non editable raster image
Linear HQx bad fair local yes yes
Agregation bad good ad hoc yes yes

Our approach: raster + vector image
Geom. TV good good variational yes yes

2
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A Geometric Total Variation I

I Idea: find linear structures in image before zooming/vectorizing
I Total Variation (TV): classical energy for image restoration, inpainting
I Continuous TV: image/function f : Ω→ R3, some norm ‖ · ‖K

TV (f ) :=

∫
Ω

‖∇f (x)‖Kdx , (or by duality)

I Discretized TV: image s : Ω ∩ Z2 → R3,

TV (s) :=
∑

pixels (i,j)

‖ĝrad s(i , j)‖Kdx ,

I Many ĝrad :
[
si+1,j − si,j

si,j+1 − si,j

]
, etc. s00

s01

s02

s10

s11

s12

s20

s21

s22
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‖ĝrad s(i , j)‖Kdx ,

I Many ĝrad :
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A Geometric Total Variation II

I T (Ω) : Set of triangulation of Ω ∩ Z2

I ĝrad per triangle:

ĝrad s(pqr) := s(p)(r − q)⊥

+ s(q)(p− r)⊥ + s(r)(q− p)⊥.

I For any triangulation T ∈ T (Ω),
geometric TV of image s is

GTV(T , s) =
1
2

∑
pqr∈T

∥∥∥ĝrad s(pqr)
∥∥∥

K

s00

s01

s02

s10

s11

s12

s20

s21

s22

i

jsij

I Minimizing GTV(T , s) for T ∈ T (Ω)
⇔ Minimizing TV(f ) among piecewise linear functions f with
f (x , y) = s(x , y) on lattice points (for all components R,G,B).

I Generally much lower than TV(s) since ĝrad may not be local.

4
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ĝrad s(pqr) := s(p)(r − q)⊥

+ s(q)(p− r)⊥ + s(r)(q− p)⊥.

I For any triangulation T ∈ T (Ω),
geometric TV of image s is

GTV(T , s) =
1
2

∑
pqr∈T
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I ĝrad per triangle:
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Example of GTV

image s 1
2

(
2 + 3

√
2
)
≈ 3.121

1
2

(
1 +
√
5 + 2

√
2
)
≈ 3.032 1

2

(
1 +
√
13 +

√
2
)
≈ 3.010

I Optimal triangulations for GTV align with digital straight lines
I GTV structures the image along strong gradients / linear features

Optimal triangulation is a vectorized representation of image s.
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Optimization algorithm for GTV

Greedy randomized optimization algorithm
Start Image s, trivial triangulation T of Domain(s)

Process by rounds edges that may decrease GTV are queued
Greedy optimization flip an edge of T if it decreases energy GTV(T , s)

or
Randomized if it does not change GTV(T , s) with a probability 1

2

Update arcs surrounding a flip are queued for next round
Stop when no decreasing flip occurred in last round

Candidate arc
Ecur =

‖ĝrad s(CBD)‖K

+‖ĝrad s(ABC )‖K

Eflip =

‖ĝrad s(ADC )‖K

+‖ĝrad s(ABD)‖K

Flip arc since
Eflip < Ecur

Put nearby arcs in queue

6
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‖ĝrad s(ADC )‖K

+‖ĝrad s(ABD)‖K

Flip arc since
Eflip < Ecur

Put nearby arcs in queue

6



Optimization algorithm for GTV

Greedy randomized optimization algorithm
Start Image s, trivial triangulation T of Domain(s)

Process by rounds edges that may decrease GTV are queued
Greedy optimization flip an edge of T if it decreases energy GTV(T , s)

or
Randomized if it does not change GTV(T , s) with a probability 1

2

Update arcs surrounding a flip are queued for next round
Stop when no decreasing flip occurred in last round

Candidate arc

Ecur =
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+‖ĝrad s(ABC )‖K

Eflip =
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Results of GTV: rasterized at ×16
original linear gradient TV linear gradient GTV crisp gradient GTV
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Contour extraction and regularization

Primal T Dual graph G

I Contours are in-between pixels ⇒ Dual graph G of T
I One pixel per dual face ⇒ One color per dual face

Dual graph improved by a variational regularization process
I Dissimilarity weights on arcs a = (pi , pj ) : wa = ‖s(pi )− s(pj )‖
I Barycenters bi are made closer to arcs of T with strong wa.

I 10 iterations for convergence

iteration 0iteration 1iteration 2iteration 3iteration 4iteration 5iteration 6iteration 7iteration 8iteration 9
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Importance of both GTV and contour regularization

before regularization after regularization
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Geometric Total Variation for Image Vectorization, Zooming
and Pixel Art Depixelizing

Context and Motivation

Variational formulation of Image Structuration

Vectorized contour regularization

Zoomed image with smooth spline contours

Experiments



Raster approach to spline contours

1. Draw a similarity graph S alongs arcs with weight wa = 0

2. Point xa are intersection of arc a with regularized contour

3. Draw a contour graph C with Bezier curves between dissimilar x in each
triangle

4. Voronoi maps for S and C : each pixel p has closest point on S and C

5. Interpolation between S and C : color(pixel p) = mix color closest points
on S and C , according to distances and some stiffness parameter β.

6. Colors on original pixels are kept !

Comparison with initial result (GTV + regularized)
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Zoomed ×16 vs reprojection and learning methods
original reproject. [Getreuer 2011] CNN [Shi et al. 2016] Our approach

total time: 8ms total time: 413ms total time: 218ms

total time: 11ms total time: 398ms total time: 320ms

total time: 63ms total time:425ms total time: 2032ms

total time: 28ms total time: 412ms total time: 1029ms

total time: 202ms total time: 551ms total time: 8524ms 11



Other comparisons
Depixelizing [Kopf, Lischinsky] vector magic [vectorMagic10]

time: ≈ 500ms time: ≈ 2000ms

time: ≈ 500ms time: ≈ 2000ms

Roussos-Maragos [Roussos-Maragios] Potrace [Potrace]

total time : 503ms time: ≈ 5000ms

Hq4x [Stepin] Hq4x(Hq4x) [Stepin] Hq4x [Stepin] Hq4x(Hq4x) [Stepin]

total time : 158ms total time: 152ms total time : 142ms total time: 320ms
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Pixel art / quantified images
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Play yourself: online demonstrators

I Our code with GitHub Repository:

https://github.com/kerautret/GTVimageVect

I Our online demonstration :
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=280

I Other demonstrations of compared works can be reproduced online:
I Convolutional Neural Network for Subpixel Super-Resolution [Shi et al. 2016] :

https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000078
I Super resolution with HQx Algorithm [Stepin] :

https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000079
I Image Interpolation with Geometric Contour Stencils [Getreuer 2011] :

http://demo.ipol.im/demo/g_interpolation_geometric_contour_stencils
I Vector-valued image interpolation by an anisotropic diffusion-projection PDE

[Roussos-Maragios] :
http://demo.ipol.im/demo/g_roussos_diffusion_interpolation

I [Vector Magic Inc] : http://vectormagic.com.
I Depixelizing [Kopf, Lischinsky] and Potrace [Potrace] through Inkscape:

https://inkscape.org/

14

https://github.com/kerautret/GTVimageVect
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=280
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000078
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000079
http://demo.ipol.im/demo/g_interpolation_geometric_contour_stencils
http://demo.ipol.im/demo/g_roussos_diffusion_interpolation
http://vectormagic.com
https://inkscape.org/


Play yourself: online demonstrators

I Our code with GitHub Repository:

https://github.com/kerautret/GTVimageVect

I Our online demonstration :
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=280

I Other demonstrations of compared works can be reproduced online:
I Convolutional Neural Network for Subpixel Super-Resolution [Shi et al. 2016] :

https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000078
I Super resolution with HQx Algorithm [Stepin] :

https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000079
I Image Interpolation with Geometric Contour Stencils [Getreuer 2011] :

http://demo.ipol.im/demo/g_interpolation_geometric_contour_stencils
I Vector-valued image interpolation by an anisotropic diffusion-projection PDE

[Roussos-Maragios] :
http://demo.ipol.im/demo/g_roussos_diffusion_interpolation

I [Vector Magic Inc] : http://vectormagic.com.
I Depixelizing [Kopf, Lischinsky] and Potrace [Potrace] through Inkscape:

https://inkscape.org/

14

https://github.com/kerautret/GTVimageVect
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=280
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000078
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000079
http://demo.ipol.im/demo/g_interpolation_geometric_contour_stencils
http://demo.ipol.im/demo/g_roussos_diffusion_interpolation
http://vectormagic.com
https://inkscape.org/


Conclusion

I A sound variational model for image zooming, image vectorization
and pixel art depixelizing

I Reproducible research, online demos
I Future works include: quantitative error analysis, improved energy

model, GPU implementation for real-time

Visit https://github.com/kerautret/GTVimageVect !
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