

Bertrand Kerautret¹ Jacques-Olivier Lachaud²

¹LIRIS, University of Lyon, France

²LAMA, University Savoie Mont Blanc, France

30 March 2021 - CIRM - Marseille (virtually)

Work initially presented during the Asian Conference on Pattern Recognition 2019

Geometric Total Variation for Image Vectorization, Zooming and Pixel Art Depixelizing

Context and Motivation

Variational formulation of Image Structuration

Vectorized contour regularization

Zoomed image with smooth spline contours

Experiments

Geometric Total Variation for Image Vectorization, Zooming and Pixel Art Depixelizing

Context and Motivation

Variational formulation of Image Structuration

Vectorized contour regularization

Zoomed image with smooth spline contours

Experiments

Image zooming x16 Image Vectorization Pixel Art Depixelizing

input

raster ×16

vector image

raster x16

output

[Roussos-Maragios]

[Potrace]

[Kopf, Lischinsky]

Image zooming x16 Image Vectorization Pixel Art Depixelizing

input

raster ×16

vector image

raster x16

output

[Potrace]

[Kopf, Lischinsky]

Image zooming x16 Image Vectorization Pixel Art Depixelizing

input

raster ×16

vector image

raster x16

output

[Potrace]

[Kopf, Lischinsky]

Image zooming x16 Image Vectorization Pixel Art Depixelizing

input

raster ×16

vector image

raster x16

output

[Potrace]

[Kopf, Lischinsky]

	Method	Photo	Quant. image	Math. model	Sample	Min-max
--	--------	-------	-----------------	-------------	--------	---------

Image zooming \Rightarrow non editable raster image							
Interpolation	fair	smooth	C^k fcts	yes	yes/no		
Reprojection	good	bad	variational	no	no		
CNN	good	bad	learning	no	no		

Image zooming \Rightarrow non editable raster image							
Interpolation	fair	smooth	C^k fcts	yes	yes/no		
Reprojection	good	bad	variational	no	no		
CNN	good	bad	learning	no	no		

Image vectorization \Rightarrow editable vector image							
levelsets fair/bad good contour no yes							
Delaunay	fair/bad	good	geometry	no	yes		

Method Photo Quant. image	Math. model	Sample	Min-max
------------------------------	-------------	--------	---------

Image zooming \Rightarrow non editable raster image							
Interpolation	fair	smooth	C^k fcts	yes	yes/no		
Reprojection	good	bad	variational	no	no		
CNN	good	bad	learning	no	no		

Image vectorization \Rightarrow editable vector image							
levelsets fair/bad good contour no yes							
Delaunay	fair/bad	good	geometry	no	yes		

Pixel art depixelizing \Rightarrow non editable raster image							
Linear HQx	bad	fair	local	yes	yes		
Agregation	bad	good	ad hoc	yes	yes		

Image zooming \Rightarrow non editable raster image							
Interpolation	fair	smooth	C^k fcts	yes	yes/no		
Reprojection	good	bad	variational	no	no		
CNN	good	bad	learning	no	no		

Image vectorization \Rightarrow editable vector image							
levelsets	fair/bad	good	contour	no	yes		
Delaunay	fair/bad	good	geometry	no	yes		

Pixel art depixelizing \Rightarrow non editable raster image							
Linear HQx	bad	fair	local	yes	yes		
Agregation	bad	good	ad hoc	yes	yes		

Our approach: raster + vector image								
Geom. TV	good	good	variational	yes	yes			

Geometric Total Variation for Image Vectorization, Zooming and Pixel Art Depixelizing

Context and Motivation

Variational formulation of Image Structuration

Vectorized contour regularization

Zoomed image with smooth spline contours

Experiments

- Idea: find linear structures in image before zooming/vectorizing
- Total Variation (TV): classical energy for image restoration, inpainting
- Continuous TV: image/function $f : \Omega \to \mathbb{R}^3$, some norm $\| \cdot \|_{\mathcal{K}}$

$$TV(f) := \int_{\Omega} \|\nabla f(x)\|_{\kappa} dx$$
, (or by duality)

Idea: find linear structures in image before zooming/vectorizing

- Total Variation (TV): classical energy for image restoration, inpainting
- Continuous TV: image/function $f : \Omega \to \mathbb{R}^3$, some norm $\| \cdot \|_{\mathcal{K}}$

$$TV(f) := \int_{\Omega} \|
abla f(x) \|_{\mathcal{K}} dx$$
, (or by duality)

► Discretized TV: image $s : \Omega \cap \mathbb{Z}^2 \to \mathbb{R}^3$, $TV(s) := \sum_{\text{pixels } (i,j)} \|\widehat{\text{grad}} \ s(i,j)\|_K dx$, $(s_{00}) \ (s_{10}) \ (s_{20}) \ (s_{20})$

Idea: find linear structures in image before zooming/vectorizing

- Total Variation (TV): classical energy for image restoration, inpainting
- Continuous TV: image/function $f : \Omega \to \mathbb{R}^3$, some norm $\|\cdot\|_{\mathcal{K}}$

$$TV(f) := \int_{\Omega} \|
abla f(x) \|_{K} dx$$
, (or by duality)

• Discretized TV: image $s : \Omega \cap \mathbb{Z}^2 \to \mathbb{R}^3$, $TV(s) := \sum \|\widehat{\operatorname{grad}} s(i,j)\|_{\kappa} dx,$ pixels(i,i)Many $\widehat{\text{grad}}$: $\begin{bmatrix} s_{i+1,j} - s_{i,j} \\ s_{i,j+1} - s_{i,j} \end{bmatrix}$, etc. S00

Idea: find linear structures in image before zooming/vectorizing

- Total Variation (TV): classical energy for image restoration, inpainting
- Continuous TV: image/function $f : \Omega \to \mathbb{R}^3$, some norm $\| \cdot \|_{\mathcal{K}}$

$$TV(f) := \int_{\Omega} \|
abla f(x) \|_{\mathcal{K}} dx$$
, (or by duality)

• Discretized TV: image $s : \Omega \cap \mathbb{Z}^2 \to \mathbb{R}^3$, $TV(s) := \sum \|\widehat{\operatorname{grad}} s(i,j)\|_{\mathcal{K}} dx$,

pixels(i,i)

Many
$$\widehat{\operatorname{grad}}$$
 : $\begin{bmatrix} s_{i+1,j} - s_{i,j} \\ s_{i,j+1} - s_{i,j} \end{bmatrix}$, etc.

Idea: find linear structures in image before zooming/vectorizing

- Total Variation (TV): classical energy for image restoration, inpainting
- Continuous TV: image/function $f : \Omega \to \mathbb{R}^3$, some norm $\| \cdot \|_{\mathcal{K}}$

$$TV(f) := \int_{\Omega} \| \nabla f(x) \|_{\kappa} dx$$
, (or by duality)

▶ Discretized TV: image s : Ω ∩ Z² → R³, (so 2)
 TV(s) := ∑ pixels (i,j) || grad s(i,j) || K dx, (so 1)
 Many grad : [s_{i+1,j} - s_{i,j}], etc. (so 2)

Idea: find linear structures in image before zooming/vectorizing

- Total Variation (TV): classical energy for image restoration, inpainting
- Continuous TV: image/function $f : \Omega \to \mathbb{R}^3$, some norm $\| \cdot \|_{\mathcal{K}}$

$$TV(f) := \int_{\Omega} \|
abla f(x) \|_{\mathcal{K}} dx$$
, (or by duality)

• Discretized TV: image $s : \Omega \cap \mathbb{Z}^2 \to \mathbb{R}^3$,

$$TV(s) := \sum_{ ext{pixels } (i,j)} \|\widehat{ ext{grad}} \ s(i,j)\|_{\mathcal{K}} dx,$$

• Many
$$\widehat{\operatorname{grad}}$$
 : $\begin{bmatrix} s_{i+1,j} - s_{i,j} \\ s_{i,j+1} - s_{i,j} \end{bmatrix}$, etc.

- $\mathcal{T}(\Omega)$: Set of triangulation of $\Omega \cap \mathbb{Z}^2$
- ▶ grad per triangle:

$$\widehat{\text{grad}} \ s(\mathbf{pqr}) := s(\mathbf{p})(\mathbf{r} - \mathbf{q})^{\perp} \\ + s(\mathbf{q})(\mathbf{p} - \mathbf{r})^{\perp} + s(\mathbf{r})(\mathbf{q} - \mathbf{p})^{\perp}.$$

- $\mathcal{T}(\Omega)$: Set of triangulation of $\Omega \cap \mathbb{Z}^2$
- ▶ grad per triangle:

$$\widehat{\text{grad}} \ s(\mathbf{pqr}) := s(\mathbf{p})(\mathbf{r} - \mathbf{q})^{\perp} \\ + s(\mathbf{q})(\mathbf{p} - \mathbf{r})^{\perp} + s(\mathbf{r})(\mathbf{q} - \mathbf{p})^{\perp}.$$

For any triangulation T ∈ T(Ω), geometric TV of image s is

$$\operatorname{GTV}(\mathcal{T}, \boldsymbol{s}) = \frac{1}{2} \sum_{\operatorname{pqr} \in \mathcal{T}} \left\| \widehat{\operatorname{grad}} \ \boldsymbol{s}(\operatorname{pqr}) \right\|_{\mathcal{K}}$$

- $\mathcal{T}(\Omega)$: Set of triangulation of $\Omega \cap \mathbb{Z}^2$
- grad per triangle:

$$\widehat{\text{grad}} \ s(\mathbf{pqr}) := s(\mathbf{p})(\mathbf{r} - \mathbf{q})^{\perp} \\ + s(\mathbf{q})(\mathbf{p} - \mathbf{r})^{\perp} + s(\mathbf{r})(\mathbf{q} - \mathbf{p})^{\perp}$$

For any triangulation T ∈ T(Ω), geometric TV of image s is

$$\operatorname{GTV}(\mathcal{T}, \boldsymbol{s}) = \frac{1}{2} \sum_{\mathsf{pqr} \in \mathcal{T}} \left\| \widehat{\operatorname{grad}} \ \boldsymbol{s}(\mathsf{pqr}) \right\|_{\mathcal{K}}$$

• Minimizing $\operatorname{GTV}(T, s)$ for $T \in \mathcal{T}(\Omega)$ \Leftrightarrow Minimizing $\operatorname{TV}(f)$ among piecewise linear functions f with f(x, y) = s(x, y) on lattice points (for all components R,G,B).

- $\mathcal{T}(\Omega)$: Set of triangulation of $\Omega \cap \mathbb{Z}^2$
- grad per triangle:

$$\widehat{\text{grad}} \ s(\mathbf{pqr}) := s(\mathbf{p})(\mathbf{r} - \mathbf{q})^{\perp} \\ + s(\mathbf{q})(\mathbf{p} - \mathbf{r})^{\perp} + s(\mathbf{r})(\mathbf{q} - \mathbf{p})^{\perp}.$$

For any triangulation T ∈ T(Ω), geometric TV of image s is

$$\operatorname{GTV}(\mathcal{T}, \boldsymbol{s}) = \frac{1}{2} \sum_{\mathsf{pqr} \in \mathcal{T}} \left\| \widehat{\operatorname{grad}} \ \boldsymbol{s}(\mathsf{pqr}) \right\|_{\mathcal{K}}$$

• Generally much lower than TV(s) since \widehat{grad} may not be local.

- $\mathcal{T}(\Omega)$: Set of triangulation of $\Omega \cap \mathbb{Z}^2$
- grad per triangle:

$$\widehat{\text{grad}} \ s(\mathbf{pqr}) := s(\mathbf{p})(\mathbf{r} - \mathbf{q})^{\perp} \\ + s(\mathbf{q})(\mathbf{p} - \mathbf{r})^{\perp} + s(\mathbf{r})(\mathbf{q} - \mathbf{p})^{\perp}$$

For any triangulation T ∈ T(Ω), geometric TV of image s is

$$\operatorname{GTV}(\mathcal{T}, \boldsymbol{s}) = \frac{1}{2} \sum_{\mathsf{pqr} \in \mathcal{T}} \left\| \widehat{\operatorname{grad}} \ \boldsymbol{s}(\mathsf{pqr}) \right\|_{\mathcal{K}}$$

• Generally much lower than TV(s) since \widehat{grad} may not be local.

- $\mathcal{T}(\Omega)$: Set of triangulation of $\Omega \cap \mathbb{Z}^2$
- grad per triangle:

$$\widehat{\text{grad}} \ s(\mathbf{pqr}) := s(\mathbf{p})(\mathbf{r} - \mathbf{q})^{\perp} \\ + s(\mathbf{q})(\mathbf{p} - \mathbf{r})^{\perp} + s(\mathbf{r})(\mathbf{q} - \mathbf{p})^{\perp}.$$

For any triangulation T ∈ T(Ω), geometric TV of image s is

$$\operatorname{GTV}(\mathcal{T}, \boldsymbol{s}) = \frac{1}{2} \sum_{\mathbf{pqr} \in \mathcal{T}} \left\| \widehat{\operatorname{grad}} \ \boldsymbol{s}(\mathbf{pqr}) \right\|_{\mathcal{K}}$$

• Generally much lower than TV(s) since \widehat{grad} may not be local.

$\mathsf{Example} \text{ of } \mathrm{GTV}$

$\mathsf{Example} \text{ of } \mathrm{GTV}$

Optimal triangulations for GTV align with digital straight lines

$\mathsf{Example} \text{ of } \mathrm{GTV}$

Optimal triangulations for GTV align with digital straight lines
 GTV structures the image along strong gradients / linear features

Example of GTV

Optimal triangulations for GTV align with digital straight lines
 GTV structures the image along strong gradients / linear features

Greedy randomized optimization algorithm

Start Image s, trivial triangulation T of Domain(s) Process by rounds edges that may decrease GTV are queued Greedy optimization flip an edge of T if it decreases energy $\operatorname{GTV}(T,s)$ or

Greedy randomized optimization algorithm

Start Image s, trivial triangulation T of Domain(s) Process by rounds edges that may decrease GTV are queued Greedy optimization flip an edge of T if it decreases energy $\operatorname{GTV}(T,s)$ or

Greedy randomized optimization algorithm

Start Image s, trivial triangulation T of Domain(s) Process by rounds edges that may decrease GTV are queued Greedy optimization flip an edge of T if it decreases energy GTV(T, s)or

Greedy randomized optimization algorithm

Start Image s, trivial triangulation T of Domain(s) Process by rounds edges that may decrease GTV are queued Greedy optimization flip an edge of T if it decreases energy GTV(T, s)or

Greedy randomized optimization algorithm

Start Image s, trivial triangulation T of Domain(s) Process by rounds edges that may decrease GTV are queued Greedy optimization flip an edge of T if it decreases energy GTV(T, s)or

Greedy randomized optimization algorithm

Start Image s, trivial triangulation T of Domain(s) Process by rounds edges that may decrease GTV are queued Greedy optimization flip an edge of T if it decreases energy $\operatorname{GTV}(T,s)$ or

Randomized if it does not change GTV(T, s) with a probability $\frac{1}{2}$ Update arcs surrounding a flip are queued for next round Stop when no *decreasing* flip occurred in last round

Flip arc since $E_{flip} < E_{cur}$

Greedy randomized optimization algorithm

Start Image s, trivial triangulation T of Domain(s) Process by rounds edges that may decrease GTV are queued Greedy optimization flip an edge of T if it decreases energy GTV(T, s)or

Results of $\mathrm{GTV}:$ rasterized at $\times 16$

linear gradient GTV

crisp gradient GTV

Geometric Total Variation for Image Vectorization, Zooming and Pixel Art Depixelizing

Context and Motivation

Variational formulation of Image Structuration

Vectorized contour regularization

Zoomed image with smooth spline contours

Experiments

- Contours are in-between pixels \Rightarrow Dual graph G of T
- One pixel per dual face \Rightarrow One color per dual face

- Contours are in-between pixels \Rightarrow Dual graph G of T
- One pixel per dual face \Rightarrow One color per dual face

- Dissimilarity weights on arcs $a = (p_i, p_j)$: $w_a = ||s(p_i) s(p_j)||_{\mathbf{a}}$
- Barycenters b_i are made closer to arcs of T with strong w_a .

- Contours are in-between pixels \Rightarrow Dual graph G of T
- One pixel per dual face \Rightarrow One color per dual face

- Dissimilarity weights on arcs $a = (p_i, p_j)$: $w_a = \|s(p_i) s(p_j)\|$
- Barycenters b_i are made closer to arcs of T with strong w_a .
- 10 iterations for convergence

- Contours are in-between pixels \Rightarrow Dual graph G of T
- One pixel per dual face \Rightarrow One color per dual face

- Dissimilarity weights on arcs $a = (p_i, p_j)$: $w_a = \|s(p_i) s(p_j)\|$
- Barycenters b_i are made closer to arcs of T with strong w_a .
- 10 iterations for convergence

- Contours are in-between pixels \Rightarrow Dual graph G of T
- One pixel per dual face \Rightarrow One color per dual face

- Dissimilarity weights on arcs $a = (p_i, p_j)$: $w_a = \|s(p_i) s(p_j)\|$
- Barycenters b_i are made closer to arcs of T with strong w_a .
- 10 iterations for convergence

iteration 2

- Contours are in-between pixels \Rightarrow Dual graph G of T
- One pixel per dual face \Rightarrow One color per dual face

- Dissimilarity weights on arcs $a = (p_i, p_j)$: $w_a = \|s(p_i) s(p_j)\|$
- Barycenters b_i are made closer to arcs of T with strong w_a .
- 10 iterations for convergence

iteration 3

- Contours are in-between pixels \Rightarrow Dual graph G of T
- One pixel per dual face \Rightarrow One color per dual face

- Dissimilarity weights on arcs $a = (p_i, p_j)$: $w_a = \|s(p_i) s(p_j)\|$
- Barycenters b_i are made closer to arcs of T with strong w_a .
- 10 iterations for convergence

- Contours are in-between pixels \Rightarrow Dual graph G of T
- One pixel per dual face \Rightarrow One color per dual face

- Dissimilarity weights on arcs $a = (p_i, p_j)$: $w_a = \|s(p_i) s(p_j)\|$
- Barycenters b_i are made closer to arcs of T with strong w_a .
- 10 iterations for convergence

- Contours are in-between pixels \Rightarrow Dual graph G of T
- One pixel per dual face \Rightarrow One color per dual face

- Dissimilarity weights on arcs $a = (p_i, p_j)$: $w_a = \|s(p_i) s(p_j)\|$
- Barycenters b_i are made closer to arcs of T with strong w_a .
- 10 iterations for convergence

- Contours are in-between pixels \Rightarrow Dual graph G of T
- One pixel per dual face \Rightarrow One color per dual face

- Dissimilarity weights on arcs $a = (p_i, p_j)$: $w_a = \|s(p_i) s(p_j)\|$
- Barycenters b_i are made closer to arcs of T with strong w_a .
- 10 iterations for convergence

- Contours are in-between pixels \Rightarrow Dual graph G of T
- One pixel per dual face \Rightarrow One color per dual face

- Dissimilarity weights on arcs $a = (p_i, p_j)$: $w_a = \|s(p_i) s(p_j)\|$
- Barycenters b_i are made closer to arcs of T with strong w_a .
- 10 iterations for convergence

- Contours are in-between pixels \Rightarrow Dual graph G of T
- One pixel per dual face \Rightarrow One color per dual face

- Dissimilarity weights on arcs $a = (p_i, p_j)$: $w_a = \|s(p_i) s(p_j)\|$
- Barycenters b_i are made closer to arcs of T with strong w_a .
- 10 iterations for convergence

Importance of both GTV and contour regularization

after regularization

Geometric Total Variation for Image Vectorization, Zooming and Pixel Art Depixelizing

Context and Motivation

Variational formulation of Image Structuration

Vectorized contour regularization

Zoomed image with smooth spline contours

Experiments

1. Draw a similarity graph S alongs arcs with weight $w_a = 0$

- 1. Draw a similarity graph S alongs arcs with weight $w_a = 0$
- 2. Point x_a are intersection of arc a with regularized contour

- 1. Draw a similarity graph S alongs arcs with weight $w_a = 0$
- 2. Point x_a are intersection of arc a with regularized contour
- 3. Draw a contour graph C with Bezier curves between dissimilar x in each triangle

- 1. Draw a similarity graph S alongs arcs with weight $w_a = 0$
- 2. Point x_a are intersection of arc a with regularized contour
- 3. Draw a contour graph C with Bezier curves between dissimilar x in each triangle
- 4. Voronoi maps for S and C: each pixel p has closest point on S and C

- 1. Draw a similarity graph S alongs arcs with weight $w_a = 0$
- 2. Point x_a are intersection of arc a with regularized contour
- 3. Draw a contour graph C with Bezier curves between dissimilar x in each triangle
- 4. Voronoi maps for S and C: each pixel p has closest point on S and C
- 5. Interpolation between S and C: color(pixel p) = mix color closest points on S and C, according to distances and some stiffness parameter β .

- 1. Draw a similarity graph S alongs arcs with weight $w_a = 0$
- 2. Point x_a are intersection of arc a with regularized contour
- 3. Draw a contour graph *C* with Bezier curves between dissimilar x in each triangle
- 4. Voronoi maps for S and C: each pixel p has closest point on S and C
- 5. Interpolation between S and C: color(pixel p) = mix color closest points on S and C, according to distances and some stiffness parameter β .
- 6. Colors on original pixels are kept !

- 1. Draw a similarity graph S alongs arcs with weight $w_a = 0$
- 2. Point x_a are intersection of arc a with regularized contour
- 3. Draw a contour graph C with Bezier curves between dissimilar x in each triangle
- 4. Voronoi maps for S and C: each pixel p has closest point on S and C
- 5. Interpolation between S and C: color(pixel p) = mix color closest points on S and C, according to distances and some stiffness parameter β .
- 6. Colors on original pixels are kept !

Geometric Total Variation for Image Vectorization, Zooming and Pixel Art Depixelizing

Context and Motivation

Variational formulation of Image Structuration

Vectorized contour regularization

Zoomed image with smooth spline contours

Experiments

Zoomed ×16 vs reprojection and learning methods reproject. [Getreuer 2011] CNN [Shi et al. 2016] o

total time: 8 ms

total time: 11 ms

total time: 63 ms

total time: 28 ms

total time: 202 ms

total time: 413 ms

total time: 398 ms

total time:425 ms

total time: 412 ms

total time: 551 ms

Our approach

total time: 218 ms

total time: 320 ms

total time: 2032 ms

total time: 1029 ms

total time: 8524 ms 11

Other comparisons

Hq4x(Hq4x) [Stepin]

total time: 320 ms

Pixel art / quantified images

Play yourself: online demonstrators

Our code with GitHub Repository:

https://github.com/kerautret/GTVimageVect

Our online demonstration :

https://ipolcore.ipol.im/demo/clientApp/demo.html?id=280

Play yourself: online demonstrators

Our code with GitHub Repository:

https://github.com/kerautret/GTVimageVect

Our online demonstration :

https://ipolcore.ipol.im/demo/clientApp/demo.html?id=280

Other demonstrations of compared works can be reproduced online:

- Convolutional Neural Network for Subpixel Super-Resolution [Shi et al. 2016] : https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000078
- Super resolution with HQx Algorithm [Stepin] : https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000079
- Image Interpolation with Geometric Contour Stencils [Getreuer 2011] : http://demo.ipol.im/demo/g_interpolation_geometric_contour_stencils
- Vector-valued image interpolation by an anisotropic diffusion-projection PDE [Roussos-Maragios] :
 - http://demo.ipol.im/demo/g_roussos_diffusion_interpolation
- [Vector Magic Inc] : http://vectormagic.com.
- Depixelizing [Kopf, Lischinsky] and Potrace [Potrace] through Inkscape: https://inkscape.org/

Conclusion

- A sound variational model for image zooming, image vectorization and pixel art depixelizing
- Reproducible research, online demos
- Future works include: quantitative error analysis, improved energy model, GPU implementation for real-time

Visit https://github.com/kerautret/GTVimageVect !

Conclusion

- A sound variational model for image zooming, image vectorization and pixel art depixelizing
- Reproducible research, online demos
- Future works include: quantitative error analysis, improved energy model, GPU implementation for real-time

Visit https://github.com/kerautret/GTVimageVect !

Thank you for your attention ! Any questions ?

References |

Pascal Getreuer.

Contour Stencils: Total Variation along Curves for Adaptive Image Interpolation. *SIAM J. on Imaging Sciences*, 4(3):954–979, January 2011.

Pascal Getreuer.

Image Interpolation with Geometric Contour Stencils. Image Processing On Line, 1:98–116, September 2011.

Pascal Getreuer.

Roussos-Maragos Tensor-Driven Diffusion for Image Interpolation. Image Processing On Line, 1:178–186, September 2011.

Vector Magic Inc.

Vector magic, 2010. http://vectormagic.com.

Johannes Kopf and Dani Lischinski.

Depixelizing Pixel Art.

In ACM SIGGRAPH 2011 Papers, pages 99:1–99:8, 2011. Vancouver, British Columbia, Canada.

Anastasios Roussos and Petros Maragos.

Vector-valued image interpolation by an anisotropic diffusion-projection PDE. In International Conference on Scale Space and Variational Methods in Computer Vision, pages 104–115. Springer, 2007.

References ||

B. Kerautret and J.-O. Lachaud.

Github repository, 2019.

https://github.com/kerautret/GTVimageVect.

Peter Selinger.

Potrace, 2001-2017.

http://potrace.sourceforge.net.

Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P Aitken, Rob Bishop, Daniel Rueckert, and Zehan Wang.

Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network.

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1874–1883, 2016.

M. Stepin.

Hqx magnification filter, 2003.

http://web.archive.org/web/20070717064839/www.hiend3d.com/hq4x.html.