

Bertrand Kerautret¹ Jacques-Olivier Lachaud²

¹ LIRIS, University of Lyon, France

²LAMA, University Savoie Mont Blanc, France

30 March 2021 - CIRM - Marseille (virtually)

Work initially presented during the Asian Conference on Pattern Recognition 2019

Geometric Total Variation for Image Vectorization, Zooming and Pixel Art Depixelizing

[Context and Motivation](#page-2-0)

[Variational formulation of Image Structuration](#page-12-0)

[Vectorized contour regularization](#page-37-0)

[Zoomed image with smooth spline contours](#page-51-0)

[Experiments](#page-59-0)

Geometric Total Variation for Image Vectorization, Zooming and Pixel Art Depixelizing

[Context and Motivation](#page-2-0)

[Variational formulation of Image Structuration](#page-12-0)

[Vectorized contour regularization](#page-37-0)

[Zoomed image with smooth spline contours](#page-51-0)

[Experiments](#page-59-0)

Image zooming x16 Image Vectorization Pixel Art Depixelizing

input

raster x16 vector image raster x16

output

[\[Roussos-Maragios\]](#page-67-0) [\[Potrace\]](#page-68-0) [\[Kopf, Lischinsky\]](#page-67-1)

1

Image zooming x16 Image Vectorization Pixel Art Depixelizing

input

raster x16 vector image raster x16

output

[\[Roussos-Maragios\]](#page-67-0) [\[Potrace\]](#page-68-0) [\[Kopf, Lischinsky\]](#page-67-1)

Image zooming x16 Image Vectorization Pixel Art Depixelizing

input

raster x16 vector image raster x16

output

[\[Roussos-Maragios\]](#page-67-0) [\[Potrace\]](#page-68-0) [\[Kopf, Lischinsky\]](#page-67-1)

Image zooming x16 Image Vectorization Pixel Art Depixelizing

input

raster x16 vector image raster x16

output

[\[Roussos-Maragios\]](#page-67-0) [\[Potrace\]](#page-68-0) [\[Kopf, Lischinsky\]](#page-67-1)

Geometric Total Variation for Image Vectorization, Zooming and Pixel Art Depixelizing

[Context and Motivation](#page-2-0)

[Variational formulation of Image Structuration](#page-12-0)

[Vectorized contour regularization](#page-37-0)

[Zoomed image with smooth spline contours](#page-51-0)

[Experiments](#page-59-0)

- \blacktriangleright Idea: find linear structures in image before zooming/vectorizing
- \triangleright Total Variation (TV): classical energy for image restoration, inpainting
- ► Continuous TV: image/function $f: \Omega \to \mathbb{R}^3$, some norm $\|\cdot\|_K$

$$
TV(f) := \int_{\Omega} ||\nabla f(x)||_K dx, \quad \text{(or by duality)}
$$

- \blacktriangleright Idea: find linear structures in image before zooming/vectorizing
- \triangleright Total Variation (TV): classical energy for image restoration, inpainting
- ► Continuous TV: image/function $f: \Omega \to \mathbb{R}^3$, some norm $\|\cdot\|_K$

$$
TV(f) := \int_{\Omega} ||\nabla f(x)||_K dx, \quad \text{(or by duality)}
$$

Discretized TV: image s : $Ω \cap \mathbb{Z}^2 \to \mathbb{R}^3$, $TV(s) := \sum \|\widehat{\text{grad } s(i,j)}\|_K dx,$ pixels (i, i) s_{00} S_{01} S_{02} S_{10} s¹¹ s_{12} s_{20} S_{21} S_{22}

- \blacktriangleright Idea: find linear structures in image before zooming/vectorizing
- \triangleright Total Variation (TV): classical energy for image restoration, inpainting
- ► Continuous TV: image/function $f: \Omega \to \mathbb{R}^3$, some norm $\|\cdot\|_K$

$$
TV(f) := \int_{\Omega} ||\nabla f(x)||_K dx, \quad \text{(or by duality)}
$$

Discretized TV: image s : $Ω \cap \mathbb{Z}^2 \to \mathbb{R}^3$, $TV(s) := \sum \|\widehat{\text{grad } s(i,j)}\|_K dx,$ pixels (i, i)

Many $\widehat{\text{grad}}$: $\begin{bmatrix} s_{i+1,j} - s_{i,j} \\ s_{i,i+1} - s_{i,j} \end{bmatrix}$ $s_{i,j+1} - s_{i,j}$ \int , etc. \int _{soo}

- \blacktriangleright Idea: find linear structures in image before zooming/vectorizing
- \triangleright Total Variation (TV): classical energy for image restoration, inpainting
- ► Continuous TV: image/function $f: \Omega \to \mathbb{R}^3$, some norm $\|\cdot\|_K$

$$
TV(f) := \int_{\Omega} ||\nabla f(x)||_K dx, \quad \text{(or by duality)}
$$

Discretized TV: image s : $Ω \cap \mathbb{Z}^2 \to \mathbb{R}^3$,

$$
\mathcal{TV}(s) := \sum_{\text{pixels } (i,j)} \|\widehat{\text{grad } s(i,j)}\|_K dx,
$$

Many $\widehat{\text{grad}}$: $\begin{bmatrix} s_{i+1,j} - s_{i,j} \\ s_{i,i+1} - s_{i,j} \end{bmatrix}$ $s_{i,j+1} - s_{i,j}$ \int , etc. \int _{soo}

- \blacktriangleright Idea: find linear structures in image before zooming/vectorizing
- \triangleright Total Variation (TV): classical energy for image restoration, inpainting
- ► Continuous TV: image/function $f: \Omega \to \mathbb{R}^3$, some norm $\|\cdot\|_K$

$$
TV(f) := \int_{\Omega} ||\nabla f(x)||_K dx, \quad \text{(or by duality)}
$$

Discretized TV: image s : $Ω \cap \mathbb{Z}^2 \to \mathbb{R}^3$, $TV(s) := \sum \|\widehat{\text{grad } s(i,j)}\|_K dx,$ $pixels$ (i, i)

$$
\triangleright \text{ Many grad}: \begin{bmatrix} s_{i+1,j} - s_{i,j} \\ s_{i,j+1} - s_{i,j} \end{bmatrix}, \text{ etc.}
$$

$$
\begin{pmatrix}\n s_{02} & s_{12} & s_{22} \\
 s_{11} & s_{22} & s_{23}\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n s_{01} & s_{11} & s_{21} \\
 s_{10} & s_{10} & s_{20}\n\end{pmatrix}
$$

- \blacktriangleright Idea: find linear structures in image before zooming/vectorizing
- \triangleright Total Variation (TV): classical energy for image restoration, inpainting
- ► Continuous TV: image/function $f: \Omega \to \mathbb{R}^3$, some norm $\|\cdot\|_K$

$$
TV(f) := \int_{\Omega} ||\nabla f(x)||_K dx, \quad \text{(or by duality)}
$$

Discretized TV: image s : $Ω \cap \mathbb{Z}^2 \to \mathbb{R}^3$,

$$
TV(s) := \sum_{\text{pixels } (i,j)} ||\widehat{\text{grad } s(i,j)}||_K dx,
$$

$$
\triangleright \text{ Many grad}: \begin{bmatrix} s_{i+1,j} - s_{i,j} \\ s_{i,j+1} - s_{i,j} \end{bmatrix}, \text{ etc.}
$$

- \blacktriangleright $\mathcal{T}(\Omega)$: Set of triangulation of $\Omega \cap \mathbb{Z}^2$
- \blacktriangleright grad per triangle:

$$
\widehat{\text{grad}} s(\text{pqr}) := s(\text{p})(\text{r} - \text{q})^{\perp} + s(\text{q})(\text{p} - \text{r})^{\perp} + s(\text{r})(\text{q} - \text{p})^{\perp}.
$$

- \blacktriangleright $\mathcal{T}(\Omega)$: Set of triangulation of $\Omega \cap \mathbb{Z}^2$
- \blacktriangleright grad per triangle:

$$
\widehat{\text{grad}} s(\text{pqr}) := s(\text{p})(\text{r} - \text{q})^{\perp} + s(\text{q})(\text{p} - \text{r})^{\perp} + s(\text{r})(\text{q} - \text{p})^{\perp}.
$$

 \blacktriangleright For any triangulation $T \in \mathcal{T}(\Omega)$, geometric TV of image s is

$$
\mathrm{GTV}(\mathcal{T}, s) = \frac{1}{2} \sum_{\mathsf{pqr} \in \mathcal{T}} \left\| \widehat{\mathrm{grad}} \; \mathsf{s}(\mathsf{pqr}) \right\|_{\mathcal{K}}
$$

- \blacktriangleright $\mathcal{T}(\Omega)$: Set of triangulation of $\Omega \cap \mathbb{Z}^2$
- \blacktriangleright grad per triangle:

$$
\widehat{\text{grad } s}(\text{pqr}) := s(\text{p})(\text{r} - \text{q})^{\perp} + s(\text{q})(\text{p} - \text{r})^{\perp} + s(\text{r})(\text{q} - \text{p})^{\perp}.
$$

 \blacktriangleright For any triangulation $T \in \mathcal{T}(\Omega)$, geometric TV of image s is

$$
\mathrm{GTV}(\mathcal{T}, s) = \frac{1}{2} \sum_{\mathsf{pqr} \in \mathcal{T}} \left\| \widehat{\mathrm{grad}} \; \mathsf{s}(\mathsf{pqr}) \right\|_{\mathsf{K}}
$$

 \triangleright Minimizing GTV(T, s) for $T \in \mathcal{T}(\Omega)$ \Leftrightarrow Minimizing $TV(f)$ among piecewise linear functions f with $f(x, y) = s(x, y)$ on lattice points (for all components R,G,B).

- \blacktriangleright $\mathcal{T}(\Omega)$: Set of triangulation of $\Omega \cap \mathbb{Z}^2$
- \blacktriangleright grad per triangle:

$$
\widehat{\text{grad}} s(\mathsf{p}\mathsf{q}\mathsf{r}) := s(\mathsf{p})(\mathsf{r}-\mathsf{q})^{\perp} + s(\mathsf{q})(\mathsf{p}-\mathsf{r})^{\perp} + s(\mathsf{r})(\mathsf{q}-\mathsf{p})^{\perp}.
$$

 \blacktriangleright For any triangulation $T \in \mathcal{T}(\Omega)$, geometric TV of image s is

$$
\mathrm{GTV}(\mathcal{T}, s) = \frac{1}{2} \sum_{\mathsf{pqr} \in \mathcal{T}} \left\| \widehat{\mathrm{grad}} \; \mathsf{s}(\mathsf{pqr}) \right\|_{\mathsf{K}}
$$

- \triangleright Minimizing GTV(T, s) for $T \in \mathcal{T}(\Omega)$ \Leftrightarrow Minimizing $TV(f)$ among piecewise linear functions f with $f(x, y) = s(x, y)$ on lattice points (for all components R,G,B).
- Generally much lower than $TV(s)$ since grad may not be local.

- \blacktriangleright $\mathcal{T}(\Omega)$: Set of triangulation of $\Omega \cap \mathbb{Z}^2$
- \blacktriangleright grad per triangle:

$$
\widehat{\text{grad } s}(\text{pqr}) := s(\text{p})(\text{r} - \text{q})^{\perp} + s(\text{q})(\text{p} - \text{r})^{\perp} + s(\text{r})(\text{q} - \text{p})^{\perp}.
$$

 \blacktriangleright For any triangulation $T \in \mathcal{T}(\Omega)$, geometric TV of image s is

$$
\mathrm{GTV}(\mathcal{T}, s) = \frac{1}{2} \sum_{\mathsf{pqr} \in \mathcal{T}} \left\| \widehat{\mathrm{grad}} \; \mathsf{s}(\mathsf{pqr}) \right\|_{\mathsf{K}}
$$

Generally much lower than $TV(s)$ since grad may not be local.

- \blacktriangleright $\mathcal{T}(\Omega)$: Set of triangulation of $\Omega \cap \mathbb{Z}^2$
- \blacktriangleright grad per triangle:

$$
\widehat{\text{grad } s}(\text{pqr}) := s(\text{p})(\text{r} - \text{q})^{\perp} + s(\text{q})(\text{p} - \text{r})^{\perp} + s(\text{r})(\text{q} - \text{p})^{\perp}.
$$

 \blacktriangleright For any triangulation $T \in \mathcal{T}(\Omega)$, geometric TV of image s is

$$
\mathrm{GTV}(\mathcal{T}, s) = \frac{1}{2} \sum_{\mathsf{pqr} \in \mathcal{T}} \left\| \widehat{\mathrm{grad}} \; \mathsf{s}(\mathsf{pqr}) \right\|_{\mathsf{K}}
$$

Generally much lower than $TV(s)$ since grad may not be local.

 \triangleright Optimal triangulations for GTV align with digital straight lines

 \triangleright Optimal triangulations for GTV align with digital straight lines \triangleright GTV structures the image along strong gradients / linear features

 \triangleright Optimal triangulations for GTV align with digital straight lines \triangleright GTV structures the image along strong gradients / linear features

Greedy randomized optimization algorithm

Start Image s, trivial triangulation T of $Domain(s)$ Process by rounds edges that may decrease GTV are queued Greedy optimization flip an edge of T if it decreases energy $GTV(T, s)$ or

Greedy randomized optimization algorithm

Start Image s, trivial triangulation T of $Domain(s)$ Process by rounds edges that may decrease GTV are queued Greedy optimization flip an edge of T if it decreases energy $GTV(T, s)$ or

Greedy randomized optimization algorithm

Start Image s, trivial triangulation T of $Domain(s)$ Process by rounds edges that may decrease GTV are queued Greedy optimization flip an edge of T if it decreases energy $GTV(T, s)$ or

Greedy randomized optimization algorithm

Start Image s, trivial triangulation T of $Domain(s)$ Process by rounds edges that may decrease GTV are queued Greedy optimization flip an edge of T if it decreases energy $GTV(T, s)$ or

Greedy randomized optimization algorithm

Start Image s, trivial triangulation T of $Domain(s)$ Process by rounds edges that may decrease GTV are queued Greedy optimization flip an edge of T if it decreases energy $GTV(T, s)$ or

Greedy randomized optimization algorithm

Start Image s, trivial triangulation T of $Domain(s)$ Process by rounds edges that may decrease GTV are queued Greedy optimization flip an edge of T if it decreases energy $GTV(T, s)$ or

Randomized if it does not change $\mathrm{GTV}(\mathcal{T},s)$ with a probability $\frac{1}{2}$ Update arcs surrounding a flip are queued for next round Stop when no *decreasing* flip occurred in last round

Flip arc since $E_{\text{flip}} < E_{\text{cur}}$

Greedy randomized optimization algorithm

Start Image s, trivial triangulation T of $Domain(s)$ Process by rounds edges that may decrease GTV are queued Greedy optimization flip an edge of T if it decreases energy $GTV(T, s)$ or

Results of GTV: rasterized at $\times 16$

Geometric Total Variation for Image Vectorization, Zooming and Pixel Art Depixelizing

[Context and Motivation](#page-2-0)

[Variational formulation of Image Structuration](#page-12-0)

[Vectorized contour regularization](#page-37-0)

[Zoomed image with smooth spline contours](#page-51-0)

[Experiments](#page-59-0)

- ► Contours are in-between pixels \Rightarrow Dual graph G of T
- \triangleright One pixel per dual face \Rightarrow One color per dual face

- \triangleright Contours are in-between pixels \Rightarrow Dual graph G of T
- \triangleright One pixel per dual face \Rightarrow One color per dual face

- Dissimilarity weights on arcs $a = (p_i, p_j) : w_a = ||s(p_i) s(p_j)||$
- Barycenters b_i are made closer to arcs of T with strong w_a .

- \triangleright Contours are in-between pixels \Rightarrow Dual graph G of T
- \triangleright One pixel per dual face \Rightarrow One color per dual face

- Dissimilarity weights on arcs $a = (p_i, p_j)$: $w_a = ||s(p_i) s(p_j)||$
- Barycenters b_i are made closer to arcs of T with strong w_a .
- \blacktriangleright 10 iterations for convergence

- \triangleright Contours are in-between pixels \Rightarrow Dual graph G of T
- \triangleright One pixel per dual face \Rightarrow One color per dual face

- Dissimilarity weights on arcs $a = (p_i, p_j)$: $w_a = ||s(p_i) s(p_j)||$
- Barycenters b_i are made closer to arcs of T with strong w_a .
- \blacktriangleright 10 iterations for convergence

- \triangleright Contours are in-between pixels \Rightarrow Dual graph G of T
- \triangleright One pixel per dual face \Rightarrow One color per dual face

- Dissimilarity weights on arcs $a = (p_i, p_j)$: $w_a = ||s(p_i) s(p_j)||$
- Barycenters b_i are made closer to arcs of T with strong w_a .
- \blacktriangleright 10 iterations for convergence

iteration 2

- \triangleright Contours are in-between pixels \Rightarrow Dual graph G of T
- \triangleright One pixel per dual face \Rightarrow One color per dual face

- Dissimilarity weights on arcs $a = (p_i, p_j)$: $w_a = ||s(p_i) s(p_j)||$
- Barycenters b_i are made closer to arcs of T with strong w_a .
- \blacktriangleright 10 iterations for convergence

iteration 3

- \triangleright Contours are in-between pixels \Rightarrow Dual graph G of T
- \triangleright One pixel per dual face \Rightarrow One color per dual face

- Dissimilarity weights on arcs $a = (p_i, p_j)$: $w_a = ||s(p_i) s(p_j)||$
- Barycenters b_i are made closer to arcs of T with strong w_a .
- \blacktriangleright 10 iterations for convergence

iteration 4

- \triangleright Contours are in-between pixels \Rightarrow Dual graph G of T
- \triangleright One pixel per dual face \Rightarrow One color per dual face

- Dissimilarity weights on arcs $a = (p_i, p_j)$: $w_a = ||s(p_i) s(p_j)||$
- Barycenters b_i are made closer to arcs of T with strong w_a .
- \blacktriangleright 10 iterations for convergence

iteration 5

- \triangleright Contours are in-between pixels \Rightarrow Dual graph G of T
- \triangleright One pixel per dual face \Rightarrow One color per dual face

- Dissimilarity weights on arcs $a = (p_i, p_j)$: $w_a = ||s(p_i) s(p_j)||$
- Barycenters b_i are made closer to arcs of T with strong w_a .
- \blacktriangleright 10 iterations for convergence

iteration 6

- \triangleright Contours are in-between pixels \Rightarrow Dual graph G of T
- \triangleright One pixel per dual face \Rightarrow One color per dual face

- Dissimilarity weights on arcs $a = (p_i, p_j)$: $w_a = ||s(p_i) s(p_j)||$
- Barycenters b_i are made closer to arcs of T with strong w_a .
- \blacktriangleright 10 iterations for convergence

- \triangleright Contours are in-between pixels \Rightarrow Dual graph G of T
- \triangleright One pixel per dual face \Rightarrow One color per dual face

- Dissimilarity weights on arcs $a = (p_i, p_j)$: $w_a = ||s(p_i) s(p_j)||$
- Barycenters b_i are made closer to arcs of T with strong w_a .
- \blacktriangleright 10 iterations for convergence

iteration 8

- \triangleright Contours are in-between pixels \Rightarrow Dual graph G of T
- \triangleright One pixel per dual face \Rightarrow One color per dual face

- Dissimilarity weights on arcs $a = (p_i, p_j)$: $w_a = ||s(p_i) s(p_j)||$
- Barycenters b_i are made closer to arcs of T with strong w_a .
- \blacktriangleright 10 iterations for convergence

iteration $9 \qquad \qquad 8$

Importance of both GTV and contour regularization

Geometric Total Variation for Image Vectorization, Zooming and Pixel Art Depixelizing

[Context and Motivation](#page-2-0)

[Variational formulation of Image Structuration](#page-12-0)

[Vectorized contour regularization](#page-37-0)

[Zoomed image with smooth spline contours](#page-51-0)

[Experiments](#page-59-0)

1. Draw a similarity graph S alongs arcs with weight $w_a = 0$

- 1. Draw a similarity graph S alongs arcs with weight $w_a = 0$
- 2. Point x_a are intersection of arc a with regularized contour

- 1. Draw a similarity graph S alongs arcs with weight $w_a = 0$
- 2. Point x_a are intersection of arc a with regularized contour
- 3. Draw a contour graph C with Bezier curves between dissimilar x in each triangle

- 1. Draw a similarity graph S alongs arcs with weight $w_a = 0$
- 2. Point x_a are intersection of arc a with regularized contour
- 3. Draw a contour graph C with Bezier curves between dissimilar x in each triangle
- 4. Voronoi maps for S and C : each pixel p has closest point on S and C

- 1. Draw a similarity graph S alongs arcs with weight $w_a = 0$
- 2. Point x_a are intersection of arc a with regularized contour
- 3. Draw a contour graph C with Bezier curves between dissimilar x in each triangle
- 4. Voronoi maps for S and C : each pixel p has closest point on S and C
- 5. Interpolation between S and C: color(pixel p) = mix color closest points on S and C, according to distances and some stiffness parameter β .

- 1. Draw a similarity graph S alongs arcs with weight $w_a = 0$
- 2. Point x_a are intersection of arc a with regularized contour
- 3. Draw a contour graph C with Bezier curves between dissimilar x in each triangle
- 4. Voronoi maps for S and C : each pixel p has closest point on S and C
- 5. Interpolation between S and C: color(pixel p) = mix color closest points on S and C, according to distances and some stiffness parameter β .
- 6. Colors on original pixels are kept !

- 1. Draw a similarity graph S alongs arcs with weight $w_a = 0$
- 2. Point x_a are intersection of arc a with regularized contour
- 3. Draw a contour graph C with Bezier curves between dissimilar x in each triangle
- 4. Voronoi maps for S and C : each pixel p has closest point on S and C
- 5. Interpolation between S and C: color(pixel p) = mix color closest points on S and C, according to distances and some stiffness parameter β .
- 6. Colors on original pixels are kept !

Geometric Total Variation for Image Vectorization, Zooming and Pixel Art Depixelizing

[Context and Motivation](#page-2-0)

[Variational formulation of Image Structuration](#page-12-0)

[Vectorized contour regularization](#page-37-0)

[Zoomed image with smooth spline contours](#page-51-0)

[Experiments](#page-59-0)

Zoomed $\times 16$ vs reprojection and learning methods

original reproject. [\[Getreuer 2011\]](#page-67-2) CNN [\[Shi et al. 2016\]](#page-68-1) Our approach

total time: 8 ms total time: 413 ms total time: 218 ms

total time: 11 ms total time: 398 ms total time: 320 ms

total time: 63 ms total time: 425 ms total time: 2032 ms

total time: 28 ms
total time: 28 ms
total time: 412 ms
total time: 1029 ms

total time: 202 ms total time: 551 ms total time: 8524 ms 11

Other comparisons

Pixel art / quantified images

Play yourself: online demonstrators

 \triangleright Our code with GitHub Repository:

<https://github.com/kerautret/GTVimageVect>

 \triangleright Our online demonstration :

<https://ipolcore.ipol.im/demo/clientApp/demo.html?id=280>

Play yourself: online demonstrators

▶ Our code with GitHub Repository:

<https://github.com/kerautret/GTVimageVect>

 \triangleright Our online demonstration :

<https://ipolcore.ipol.im/demo/clientApp/demo.html?id=280>

▶ Other demonstrations of compared works can be reproduced online:

- \triangleright Convolutional Neural Network for Subpixel Super-Resolution [\[Shi et al. 2016\]](#page-68-1) : <https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000078>
- \triangleright Super resolution with HQx Algorithm [\[Stepin\]](#page-68-2) : <https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000079>
- Image Interpolation with Geometric Contour Stencils [\[Getreuer 2011\]](#page-67-4) : http://demo.ipol.im/demo/g_interpolation_geometric_contour_stencils
- \triangleright Vector-valued image interpolation by an anisotropic diffusion-projection PDE [\[Roussos-Maragios\]](#page-67-5) :
	- http://demo.ipol.im/demo/g_roussos_diffusion_interpolation
- ^I [\[Vector Magic Inc\]](#page-67-3) : <http://vectormagic.com>.
- **I** Depixelizing [\[Kopf, Lischinsky\]](#page-67-1) and Potrace [\[Potrace\]](#page-68-0) through Inkscape: <https://inkscape.org/>

Conclusion

- \triangleright A sound variational model for image zooming, image vectorization and pixel art depixelizing
- \blacktriangleright Reproducible research, online demos
- \blacktriangleright Future works include: quantitative error analysis, improved energy model, GPU implementation for real-time

Visit <https://github.com/kerautret/GTVimageVect> !

Conclusion

- \triangleright A sound variational model for image zooming, image vectorization and pixel art depixelizing
- \blacktriangleright Reproducible research, online demos
- \blacktriangleright Future works include: quantitative error analysis, improved energy model, GPU implementation for real-time

Visit <https://github.com/kerautret/GTVimageVect> !

Thank you for your attention ! Any questions ?

References I

Pascal Getreuer.

Contour Stencils: Total Variation along Curves for Adaptive Image Interpolation. SIAM J. on Imaging Sciences, 4(3):954–979, January 2011.

Pascal Getreuer.

Image Interpolation with Geometric Contour Stencils. Image Processing On Line, 1:98–116, September 2011.

Pascal Getreuer.

Roussos-Maragos Tensor-Driven Diffusion for Image Interpolation. Image Processing On Line, 1:178–186, September 2011.

Vector Magic Inc.

Vector magic, 2010. [http://vectormagic.com](http:// vectormagic.com).

Johannes Kopf and Dani Lischinski.

Depixelizing Pixel Art.

In ACM SIGGRAPH 2011 Papers, pages 99:1–99:8, 2011. Vancouver, British Columbia, Canada.

Anastasios Roussos and Petros Maragos.

Vector-valued image interpolation by an anisotropic diffusion-projection PDE. In International Conference on Scale Space and Variational Methods in Computer Vision, pages 104–115. Springer, 2007.

References II

螶

B. Kerautret and J.-O. Lachaud.

Github repository, 2019. <https://github.com/kerautret/GTVimageVect>.

Peter Selinger.

Potrace, 2001-2017. <http://potrace.sourceforge.net>.

Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P Aitken, Rob

Bishop, Daniel Rueckert, and Zehan Wang.

Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network.

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1874–1883, 2016.

M. Stepin.

Hqx magnification filter, 2003.

[http://web.archive.org/web/20070717064839/www.hiend3d.com/hq4x.html.](http://web.archive.org/web/ 20070717064839/www.hiend3d.com/hq4x.html.)