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Vector bundles and differential geometry
Ingredients of smooth theory

I E a vector bundle over a smooth manifold M

I Vector spaces of E-valued differential k-forms Λk(M;E)

I 0-forms are also called sections Γ(E) = Λ0(M;E)

I A connection ∇ : Γ(E)→ Λ1(M;E)
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Vector bundles and differential geometry
Connection ∇ leads to exterior covariant derivative d∇

I Connection allows one to connect different fibers via parallel transport
(hence the name)

I Connection ⇒ parallel transport, exterior covariant derivative, curvature

I Connection ∇ extends to exterior covariant derivative

d∇ : Λk(M;E)→ Λk+1(M;E)

I This leads to a sequence

Γ(E) = Λ0(M;E)
∇=d∇−→ Λ1(M;E)

d∇→ Λ2(M;E)
d∇→ Λ3(M;E)→ · · ·

I Unlike de Rham complex, d2 need not be 0
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Vector bundles and differential geometry
d∇ leads to curvature

I Indeed d∇ ◦ d∇ = 0 is equivalent to having a flat connection

I Failure of flatness is measured by curvature:

d∇ ◦ d∇ = F ∈ Λ2(M; End(E))

I Curvature F is an endomorphism valued 2-form

6 / 25



Vector bundles and differential geometry
d∇ leads to curvature

I Indeed d∇ ◦ d∇ = 0 is equivalent to having a flat connection

I Failure of flatness is measured by curvature:

d∇ ◦ d∇ = F ∈ Λ2(M; End(E))

I Curvature F is an endomorphism valued 2-form

6 / 25



Vector bundles and differential geometry
d∇ leads to curvature

I Indeed d∇ ◦ d∇ = 0 is equivalent to having a flat connection

I Failure of flatness is measured by curvature:

d∇ ◦ d∇ = F ∈ Λ2(M; End(E))

I Curvature F is an endomorphism valued 2-form

6 / 25



Vector bundles and differential geometry
How things fit together

I Λ•(M) of differential forms acts on Λ•(M;E) through linear maps

Λk(M)×Λl(M;E)→ Λk+l(M;E), (w,α) 7→ w∧ α (1)

I d∇ is compatible with d : Λk(M)→ Λk+1(M) by way of Leibniz rule

d∇(w∧ α) = dw∧ α+ (−1)|w|w∧ d∇α .

I Curvature F acts on E-valued forms via the linear maps

Λk(M; End(E))×Λl(M;E)→ Λk+l(M;E) (2)

I A smooth map ϕ : N→M determines a map of the corresponding sequences
(for E on M and ϕ∗E on N)

I The structures (1) and (2) as well as d∇ are natural w.r.t pullbacks

I d commuting with pullbacks is a generalization of chain rule

I d∇ commuting with pullbacks is a further generalization
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Our results

I A discrete exterior covariant derivative d∇ is the building block

I Discrete d∇ generalizes the discrete d using parallel transports

I Wedge product from DEC is generalized also using parallel transports

I Discrete d∇ and wedge commute under pullbacks

I Pullback by what? ... We will see shortly

I Result is a structure-preserving discretization of differential geometry

I Discrete curvature emerges from structural features

I This discrete curvature satisfies the Bianchi identity

I Other consequences are about trivializability and reduction of structure group
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Our results
Structure preserving discrete theory

I Given X simplicial complex and discrete vector bundle with connection

I Ck(X;E) spaces of vector bundle valued k-cochains (to be defined later)
I Ck(X; Hom(E)) spaces of homomorphism valued k-cochains
I Ck(X) real valued k-cochains on X

Theorem (Structure-preserving discretization)

There exist maps

∇ : Γ(E) = C0(X;E)→ C1(X;E)

d∇ : Ck(X;E)→ Ck+1(X;E)

∧ : Ck(X)× Cl(X;E)→ Ck+l(X;E)

Ck(X; Hom(E))× Cl(X;E)→ Ck+l(X;E)

d∇ : Ck(X; Hom(E))→ Ck+1(X; Hom(E))
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Our results
Structure preserving discrete theory

Theorem (Structure-preserving discretization (contd.))

and F ∈ C2(X; Hom(E)) such that:

(i) For f ∈ C0(X), section s ∈ C0(X,E): ∇(f∧ s) = df∧ s+ f∧∇s

(ii) For α ∈ Ck(X,E) and w ∈ Cl(X): d∇(α∧w) = d∇α∧w+ (−1)kα∧ dw

(iii) Given abstract simplicial map ϕ : X ′ → X: ϕ∗(α∧w) = ϕ∗α∧ϕ∗w

(iv) ϕ∗d∇ = d∇ϕ
∗

(v) d∇d∇α = F α

(vi) d∇F = 0 (Bianchi identity)
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Our results
Trivializability and reduction of structure group

Definition
A discrete vector bundle with connection is flat (or the connection is flat) if the parallel
transport between any two points only depends on the simple homotopy class of the
path connecting the two points.

I Sometimes the parallel transport maps can be simplified via bundle isomorphism

I Trivializability: transport maps become identity

I Reduction of structure group: transport maps become elements of specified group
I Main result:

• Characterization of trivializabilty in terms of flatness
• Existence of trivial subbundles in terms of flat sections

I Not covered in this talk
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Section 2

Discrete theory
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Discrete vector bundles with connection

Definition
Given a simplicial complex X, a real discrete vector bundle with connection over X
consists of the following:

(i) for each vertex i, a finite-dimensional real vector space Ei (fiber at i)

(ii) for each edge [i, j], an invertible linear map Uji : Ei → Ej (parallel transport from
i to j)

Compatibility condition Uij = U
−1
ji

Uji can be obtained by solving parallel transport ODEs
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Vector bundle valued cochains

Definition
A vector bundle valued k-cochain α assigns to each k-simplex σ of X an element
〈α,σ〉l of El where l is a vertex in the simplex. The vector space of k-cochains is
denoted Ck(X;E). A section s is a vector bundle valued 0-cochain, i.e., a vector
si ∈ Ei for each vertex.

I For permuted simplex [vτ(0), . . . , vτ(k)]

〈α, [vτ(0), . . . , vτ(k)]〉l := sgn(τ)〈α, [v0, . . . , vk]〉l

I 〈α,σ〉l transported to vertex i denoted 〈α,σ〉li, i.e., 〈α,σ〉li := Uil〈α,σ〉l

I Λk(M;E) discretized to Ck(X;E) using local trivializations
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Discrete covariant derivative ∇

Definition
The discrete covariant derivative or connection is a map ∇ : C0(X,E)→ C1(X,E)
which to a section s assigns the vector-valued 1-cochain defined by its value on edges
[i, j] by

〈∇s, [i, j]〉i := Uijsj − si . (3)

i j
Uij

〈∇s, [i, j]〉i

si

sj
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Discrete exterior covariant derivative d∇
Definition
Given α ∈ Ck−1(X,E) and [0 ...k] a k-simplex, the discrete exterior covariant
derivative d∇ is defined by

〈d∇α, [0 ...k]〉0 := U01〈α, [1 ...k]〉1 +
k∑
j=1

(−1)j〈α, [0 ... ĵ ...k]〉0 .

[Kock, 1996]

0 1

2

〈α
, [

02
]〉 0

〈α, [01]〉0

〈α
, [12]〉

1
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Abstract simplicial maps

X Y

Abstract simplicial map

X Y

Not an abstract simplicial map

I Collapse is OK

I Vertices that were “near” (edge connected) remain “near”

17 / 25



Abstract simplicial maps

X Y

Abstract simplicial map

X Y

Not an abstract simplicial map

I Collapse is OK

I Vertices that were “near” (edge connected) remain “near”

17 / 25



Abstract simplicial maps

X Y

Abstract simplicial map

X Y

Not an abstract simplicial map

I Collapse is OK

I Vertices that were “near” (edge connected) remain “near”

17 / 25



Abstract simplicial maps

X Y

Abstract simplicial map

X Y

Not an abstract simplicial map

I Collapse is OK

I Vertices that were “near” (edge connected) remain “near”

17 / 25



Abstract simplicial maps
Discrete pullback bundle

E0 E1

E1

IdE1

E0 E1

X Y

E0 E1

E2

E0 E1

E2

X Y

18 / 25



Abstract simplicial maps
Discrete pullback bundle

E0 E1

E1

IdE1

E0 E1

X Y

E0 E1

E2

E0 E1

E2

X Y

18 / 25



Discrete wedge product

Definition
Given α ∈ Ck(X,E) and w ∈ Cl(X) their wedge product is defined by

〈α∧w, [0 ...k+ l]〉0 =
1

k+ l+ 1!

∑
τ∈Sk+l+1

sgn(τ)〈α^ w, [τ(0), τ(1)...τ(k+ l)]〉0

I Generalization of the DEC wedge product

I Transports that are needed before adding vectors are hidden in the notation

I Anti-commutative but not associative (same as DEC)
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Homomorphism valued cochains

Definition
A homomorphism-valued k-cochain A is a map whose value at each k-simplex [0 ...k]
is a linear map Ek → E0. The bundle of homomorphism-valued k-cochains is denoted
Ck(X; Hom(E)). Given A ∈ Ck(X; Hom(E) and α ∈ Cl(X;E) the action of A on α is
defined as:

〈A α, [0 ...k+ l]〉 = 〈A, [0 ...k]〉〈α, [k ...k+ l]〉 .
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d∇ for homomorphism valued cochains

Definition
Let A ∈ Ck(X; Hom(E)). Then d∇A is definied by its evaluaton on a simplex
[0 ...k+ 1] by

〈d∇A, [0 ...k+ 1]〉0 := U01〈A, [1 ...k+ 1]〉1 +
k∑
j=1

[
(−1)j〈A, [0 ... ĵ ...k+ 1]〉0

]
+

(−1)k+1〈A, [0 ...k]〉Uk,(k+1) .
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Discrete curvature 2-cochain

Definition
The discrete curvature is a homomorphism-valued 2-cochain, F ∈ C2(X; Hom(E)),
defined on a triangle [012] by

〈F, [012]〉 = U01U12 −U02 .

0 2

1

Same information as “holonomy minus identity” but fits with structure-preservation
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Section 3

Summary and outlook
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Summary of main results

Structure-preserving discretization

(i) For f ∈ C0(X), section s ∈ C0(X,E): ∇(f∧ s) = df∧ s+ f∧∇s
(ii) For α ∈ Ck(X,E) and w ∈ Cl(X): d∇(α∧w) = d∇α∧w+ (−1)kα∧ dw

(iii) Given abstract simplicial map ϕ : X ′ → X: ϕ∗(α∧w) = ϕ∗α∧ϕ∗w

(iv) ϕ∗d∇ = d∇ϕ
∗

(v) d∇d∇α = F α

(vi) d∇F = 0 (Bianchi identity)

Trivializability and reduction of structure group

(i) Characterization of trivializabilty in terms of flatness

(ii) Existence of trivial subbundles in terms of flat sections
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Conclusions and outlook

I A combinatorial discretization of vector bundles with connection has been built

I Using d∇ as a building block curvature emerges from the discretization

I Bundle metric has been studied, but not Riemannian metric

I Not clear how to recognize, for example, the tangent bundle

I There are other ways to organize the discrete connection
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