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Non-imaging optics
[ IeleTololele}

Nonimaging optics

Transfer of light from a source to a target.

INPUT:

o Light source, measure p.

@ Destination target, measure v.
OUTPUT:

@ A mirror surface S reflecting p on v.
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Non-imaging optics
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Semi-discrete setup

e Source Q C R, with intensity u(E) = [ p(x)dx
o Target Y = (yi)i<i<n, With intensity v =, ;.
@ Mass balance: u(Q2) =v(Y)
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Non-imaging optics
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Far field reflector problem

mirror S

(=, (x|p:) — i)

light source
SZ
Yi /
p fq ] N
\Z (w) v \\é\
- %?5’
<2

We choose S to be a maximum of planes, so it is the graph of

wix = max (x,py) ~ U
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Non-imaging optics
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Far field reflector problem

mirror S/

(, (x|p:) — i)

light source
Yi SQ/
p fq ] .
Vi(9) v &
e %?5’

Vi() = {x € QVj : {x,pi) — i > (x,p;) — ¥j}

Far field reflector problem:

Find v = ('¢i)1§i§N s.t. Vi: ,LL(V,(T/J)) =V
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Non-imaging optics
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Far field reflector problem

mirror S/

(, (x|p:) — i)

light source
Yi SQ/
p fq ] .
Vi(9) v &
e %?5’

Vi() = {x € QVj : {x,pi) — i > (x,p;) — ¥j}

Far field reflector problem:

Find v = ('¢i)1§i§N s.t. Vi: ,LL(V,(T/J)) =V

Linear in ¢» — Optimal transport
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Non-imaging optics
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Near field reflector problem

Here, ¥ is a maximum of paraboloids of focus y;.

1 .
s = Dby
2

2
1r§nia§XN 24); ]

u(x) =
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Non-imaging optics
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Near field reflector problem

. Yi 1y
Vi) = {x e s 5 = Fllx -yl 2 57 - k- ylP

1
29; 29h;

Near field reflector problem:

Find ¢ = (wi)lgigN s.t. Vi € [[1, N]] : [j,(\/,(l/})) =
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Non-imaging optics
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Near field reflector problem

Vi oo 1 2
e vl > - e —

Vi) = {x e 5

Near field reflector problem:

Find ¢ = (wi)lgigN s.t. Vi € [[1, N]] : [j,(\/,(l/})) =

Not linear in ¢» — Not optimal transport
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Non-imaging optics
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Comparison of the diagrams

(a) (Vi)i<i<n in the Far field case. (b) (Vi)1<i<w in the Near field case.

Figure 1: Comparison of Power and Mobius Diagram
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Generated Jacobian Equations
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Generating function

Definition (Generating function)

A function G : Q2 X Y x R — R is called a generating function if it
satisfies (Reg), (Mono), (Twist) and (UC).

Definition (Generalized Laguerre cells)

We define the generalized Laguerre cells associated to a generating
function G for i € [1, N] by

Lag,(i/J) = {X € Q|v./ € [[17 N]], G(X’thi) > G(X,_)/Jﬂ/}])}

Far field para”el reflector: Near fleld paraIIeI reflector:

1 v
G(X,y,V):<X,p>*V G(Xa)/av):Z_EHX_sz
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Generated Jacobian Equations
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Semi-discrete Generated Jacobian equation (Trudinger, 14)

The generated Jacobian equation consists in finding ¢ € RN such that
H() = v (GJE)

where the function H is given by H(v) = (u(Lag;(¥)))1<i<n-

Generalizes semi-discrete O.T. problems (in the dual form).
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Numerical resolution
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Differential of H

Under an hypothesis of genericity of Y, H is of class C1 and for i # j

OH, |G (X, yi> ¥i)| d-1
— dH 0

o /L X)HG Coii) — Gy g )2
Z w

W, = /

Lag ()

Lag; ()

Lagij(p+ tej)
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Numerical resolution
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Properties of DH

St = {w e RNV, Hi(y) > o}

e DH(v) the differential of H is of rank N —1 on ST.
o The image of DH isim(DH(z))) = 1+ where 1 = (1,--- ,1) € RV,
o ker(DH(v)) = span(w) with w; > 0.

A

Proposition (Unique descent direction)

Let ) € ST, then the system:

u =0

has a unique solution. 12/21




Numerical resolution
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Newton algorithm to solve Generated Jacobian Equations

5" = {v € {a} x 3,91 VI¥i € [L, N], Hi(¥) > 5}

Require: 9 € S° and precision e
Ensure: 1 such that [|[H(¢) —v|| <€
1. k<0
while ||H(¥¥) — v|| > € do
3: Compute the descent direction u* solution of (1)
4: Let k™ = ok — 7uk, we compute

N

7 = max {r € 27, || H(w*T) = ]| < (1 = DIIHEY) vl

under the condition %7 € S°.
PRk — rkuk and k <+ k +1

end while

return X

N
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Numerical resolution
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Convergence of the algorithm

If Q is a connected compact set, and under some assumptions on Y. If

we choose 2§ < minN vj, then the algorithm converges in a finite
1<i<

number of steps.

Sketch of proof

KO = {y € SO, ||H(v) — v|| < ||H(%°) — v||} is a non empty compact
set.

At any iteration, we have 1% € K°.

By compactness, for any k € N, 78 > 7., which gives:

H@S) — )l < (1= T22) 1) — ]

A\
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Algo for NF reflector
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Implementation for the near field reflector

Figure 2: Near field reflector problem
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Algo for NF reflector
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Computing the diagram

Mobius diagram
Vi = {x € Q¥ € [1,N] : Mllx — pill® = i < Mllx = pill? = 17}

Pow; = {x € QI¥j € [1,N] : [Ix — cil|* — ri < [Ix = ¢jl|* - 1;}

Lemma (Boissonnat,Wormser, Yvinec,07)

V; = N(Pow; N P)

with V; C R" x {0}, Pow; C R™1 and P = {(x, ||x||?)|x € R"} c R"1
M is the orthogonal projection of R"*! on R" x {0}.
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Algo for NF reflectol
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Algo for NF reflector
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Convergence rate
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Conclusion
°

Conclusion

Contribution

e Adaptation of an algorithm for O.T. to generated Jacobian
equations.

@ Proof of convergence

@ Implementation for the Near Field reflector.
Perspectives

@ Uniqueness to (GJE) (semi-discrete case).

o initilization of the algorithm.
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Appendix
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Genericity of Y

(Genericity of Y). For i, j, k three distinct indices in [1, N], we define
Gij(¥) = {x € Q|G(x,yi, i) = G(x,y,v;)} and
Gk (V) = Gji() N G ().

@ We say that Y is generic with respect to G if for all distinct indices
i,j, k and ¢ € RN we have

HH(Gi(v)) = 0
@ We say that Y is generic with respect to X if for all distinct indices
i,j and 1 € RN we have

1O (Gy(p) N oX) =0
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Appendix
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Conditions on the Generating function

@ The regularity condition: (x,y,v) — G(x,y,v) is continuously
differentiable in x and v, and

Va € R, sup |Gx(x,y, V)| < +o0 (Reg)
(x,y,V)EQXY x]—00,q]

@ The monotonicity condition:
V(x,y,v) €Q XY XxR:G/(x,y,v) <0 (Mono)
o The twist condition:

(y,v) — (G(x,y,Vv), G(x,y,v)) is injective for any x € X
(Twist)
@ The uniform convergence condition:

VyeY, lim inf G(x,y,v) =400 (UQ)

v——00 xeN
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