Numerical resolution of semi-discrete Generated Jacobian equations

Anatole Gallouet
Supervisors: Quentin Mérigot and Boris Thibert

Laboratoire Jean Kuntzmann, Grenoble

Digital Geometry and Discrete Variational Calculus CIRM - 1st April 2021

Non-imaging optics Generated Jacobian Equations Numerical resolution Algo for NF reflector Conclusion Appendi

Nonimaging optics

Transfer of light from a source to a target.

INPUT:

- Light source, measure μ .
- Destination target, measure ν .

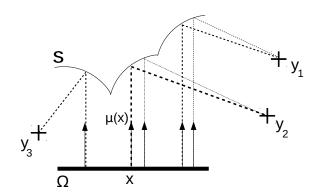
OUTPUT:

• A mirror surface S reflecting μ on ν .

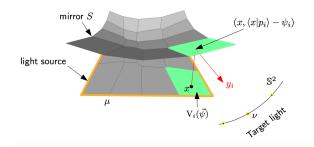
Semi-discrete setup

Non-imaging optics

- Source $\Omega \subset \mathbb{R}^d$, with intensity $\mu(E) = \int_E \rho(x) dx$
- Target $Y = (y_i)_{1 \le i \le N}$, with intensity $\nu = \sum_i \nu_i \delta_{y_i}$.
- Mass balance: $\mu(\Omega) = \nu(Y)$.



Far field reflector problem



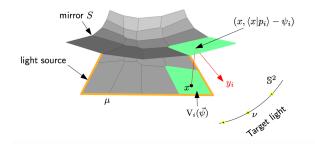
We choose S to be a maximum of planes, so it is the graph of

$$u: x \to \max_{1 \le i \le N} \langle x, p_i \rangle - \psi_i.$$

Far field reflector problem

Non-imaging optics

0000000



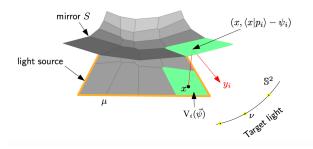
$$V_i(\psi) = \{x \in \Omega | \forall j : \langle x, p_i \rangle - \psi_i \ge \langle x, p_i \rangle - \psi_i \}$$

Far field reflector problem:

Find
$$\psi = (\psi_i)_{1 \le i \le N}$$
 s.t. $\forall i : \mu(V_i(\psi)) = \nu_i$

Far field reflector problem

0000000



$$V_i(\psi) = \{x \in \Omega | \forall j : \langle x, p_i \rangle - \psi_i \ge \langle x, p_i \rangle - \psi_i \}$$

Far field reflector problem:

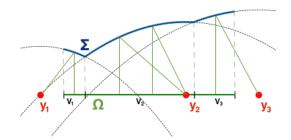
Find
$$\psi = (\psi_i)_{1 \le i \le N}$$
 s.t. $\forall i : \mu(V_i(\psi)) = \nu_i$

Linear in $\psi \to \mathsf{Optimal}$ transport

Near field reflector problem

Non-imaging optics

0000000



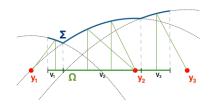
Here, Σ is a maximum of paraboloids of focus y_i .

$$u(x) = \max_{1 \le i \le N} \frac{1}{2\psi_i} - \frac{\psi_i}{2} ||x - y_i||^2$$

Near field reflector problem

Non-imaging optics

0000000



$$V_i(\psi) = \left\{ x \in \Omega | \forall j : \frac{1}{2\psi_i} - \frac{\psi_i}{2} ||x - y_i||^2 \ge \frac{1}{2\psi_i} - \frac{\psi_j}{2} ||x - y_j||^2 \right\}$$

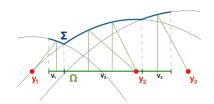
Near field reflector problem:

Find
$$\psi = (\psi_i)_{1 \le i \le N}$$
 s.t. $\forall i \in [1, N] : \mu(V_i(\psi)) = \nu_i$

Near field reflector problem

Non-imaging optics

0000000



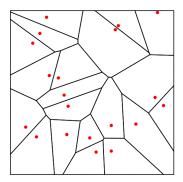
$$V_i(\psi) = \left\{ x \in \Omega | \forall j : \frac{1}{2\psi_i} - \frac{\psi_i}{2} ||x - y_i||^2 \ge \frac{1}{2\psi_i} - \frac{\psi_j}{2} ||x - y_j||^2 \right\}$$

Near field reflector problem:

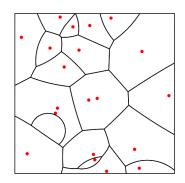
Find
$$\psi = (\psi_i)_{1 \le i \le N}$$
 s.t. $\forall i \in [1, N] : \mu(V_i(\psi)) = \nu_i$

Not linear in $\psi \to \mathsf{Not}$ optimal transport

Comparison of the diagrams



(a) $(V_i)_{1 \le i \le N}$ in the Far field case.



(b) $(V_i)_{1 \le i \le N}$ in the Near field case.

Figure 1: Comparison of Power and Mobius Diagram

Generating function

Definition (Generating function)

A function $G: \Omega \times Y \times \mathbb{R} \to \mathbb{R}$ is called a generating function if it satisfies (Reg), (Mono), (Twist) and (UC).

Definition (Generalized Laguerre cells)

We define the generalized Laguerre cells associated to a generating function G for $i \in [1, N]$ by

$$\mathsf{Lag}_i(\psi) = \{ x \in \Omega | \forall j \in [1, N], G(x, y_i, \psi_i) \geq G(x, y_i, \psi_i) \}$$

Far field parallel reflector:

Near field parallel reflector:

$$G(x,y,v) = \langle x,p \rangle - v$$

$$G(x,y,v) = \frac{1}{2v} - \frac{v}{2}||x-y||^2$$

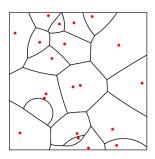
Non-imaging optics

Semi-discrete Generated Jacobian equation (Trudinger, 14)

The generated Jacobian equation consists in finding $\psi \in \mathbb{R}^N$ such that

$$H(\psi) = \nu$$
 (GJE)

where the function H is given by $H(\psi) = (\mu(\mathsf{Lag}_i(\psi)))_{1 \le i \le N}$.



Generalizes semi-discrete O.T. problems (in the dual form).

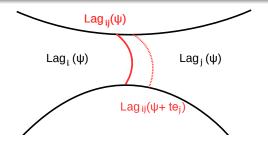
Differential of H

Proposition

Non-imaging optics

Under an hypothesis of genericity of Y, H is of class \mathcal{C}^1 and for $i \neq j$:

$$\begin{cases} \frac{\partial H_j}{\partial \psi_i}(\psi) = \int_{\text{Lag}_{ij}(\psi)} \rho(x) \frac{|G_v(x, y_i, \psi_i)|}{||G_x(x, y_j, \psi_j) - G_x(x, y_i, \psi_i)||} d\mathcal{H}^{d-1}(x) \ge 0 \\ \frac{\partial H_i}{\partial \psi_i}(\psi) = -\sum_{j \ne i} \frac{\partial H_j}{\partial \psi_i}(\psi) \end{cases}$$



Properties of DH

$$\mathcal{S}^{+} = \left\{ \psi \in \mathbb{R}^{N} | \forall i, H_{i}(\psi) > 0
ight\}$$

Proposition

- ullet DH(ψ) the differential of H is of rank N 1 on \mathcal{S}^+ .
- The image of DH is $\operatorname{im}(DH(\psi)) = \mathbb{1}^{\perp}$ where $\mathbb{1} = (1, \cdots, 1) \in \mathbb{R}^{N}$.
- $\ker(DH(\psi)) = \operatorname{span}(w)$ with $w_i > 0$.

Proposition (Unique descent direction)

Let $\psi \in \mathcal{S}^+$, then the system:

$$\begin{cases} DH(\psi)u = H(\psi) - \nu \\ u_1 = 0 \end{cases} \tag{1}$$

has a unique solution.

Newton algorithm to solve Generated Jacobian Equations

$$\mathbf{S}^{\delta} = \left\{ \psi \in \{\alpha\} \times [\beta, \gamma]^{(N-1)} | \forall i \in [1, N], H_i(\psi) \ge \frac{\delta}{\delta} \right\}$$

Require: $\psi^0 \in \mathcal{S}^{\delta}$ and precision ϵ

Ensure: ψ such that $||H(\psi) - \nu|| \le \epsilon$

1: $k \leftarrow 0$

Non-imaging optics

2: while $||H(\psi^k) - \nu|| > \epsilon$ do

3: Compute the descent direction u^k solution of (1)

4: Let $\psi^{k,\tau} = \psi^k - \tau u^k$, we compute

$$\boldsymbol{\tau^k} = \max\left\{\tau \in 2^{-\mathbb{N}}, ||H(\psi^{k,\tau}) - \nu|| \leq (1 - \frac{\tau}{2})||H(\psi^k) - \nu||\right\}$$

under the condition $\psi^{k,\tau} \in \mathcal{S}^{\delta}$.

5: $\psi^{k+1} \leftarrow \psi^k - \tau^k u^k$ and $k \leftarrow k+1$

6: end while

7: return ψ^k

Convergence of the algorithm

Theorem

Non-imaging optics

If Ω is a connected compact set, and under some assumptions on Y. If we choose $2\delta \leq \min_{1 \leq i \leq N} \nu_i$, then the algorithm converges in a finite number of steps.

Sketch of proof

 $K^{\delta}=\{\psi\in S^{\delta}, ||H(\psi)-\nu||\leq ||H(\psi^0)-\nu||\}$ is a non empty compact set.

At any iteration, we have $\psi^k \in \mathcal{K}^{\delta}$.

By compactness, for any $k \in \mathbb{N}$, $\tau^k \geq \tau_{min}$ which gives:

$$||H(\psi^k) - \nu|| \le \left(1 - \frac{\tau_{min}}{2}\right)^k ||H(\psi^0) - \nu||$$

Implementation for the near field reflector

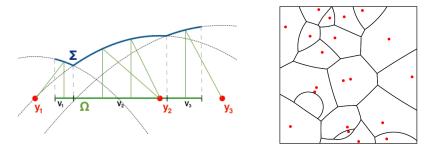


Figure 2: Near field reflector problem

Computing the diagram

Möbius diagram

Non-imaging optics

$$V_i = \{x \in \Omega | \forall j \in [1, N] : \lambda_i | |x - p_i||^2 - \mu_i \le \lambda_j ||x - p_j||^2 - \mu_j \}$$

Power diagram

$$Pow_i = \{x \in \Omega | \forall j \in [1, N] : ||x - c_i||^2 - r_i \le ||x - c_j||^2 - r_j\}$$

Lemma (Boissonnat, Wormser, Yvinec, 07)

$$V_i = \Pi(Pow_i \cap P)$$

with $V_i \subset \mathbb{R}^n \times \{0\}$, $Pow_i \subset \mathbb{R}^{n+1}$ and $P = \{(x, ||x||^2) | x \in \mathbb{R}^n\} \subset \mathbb{R}^{n+1}$. Π is the orthogonal projection of \mathbb{R}^{n+1} on $\mathbb{R}^n \times \{0\}$.

Newton algorithm for 5000 points

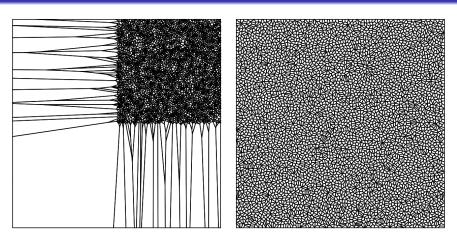
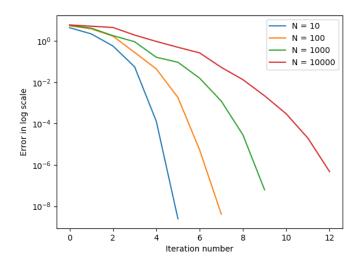


Figure 3: Initial and final diagram for 5000 points $\Omega = [-1, 1]^2$ and $Y \subset [0, 1]^2$

Convergence rate



Conclusion

Contribution

- Adaptation of an algorithm for O.T. to generated Jacobian equations.
- Proof of convergence
- Implementation for the Near Field reflector.

Perspectives

- Uniqueness to (GJE) (semi-discrete case).
- initilization of the algorithm.

Genericity of Y

Definition

Non-imaging optics

(Genericity of Y). For i, j, k three distinct indices in [1, N], we define $G_{ij}(\psi) = \{x \in \Omega | G(x, y_i, \psi_i) = G(x, y_j, \psi_j)\}$ and $G_{ijk}(\psi) = G_{ij}(\psi) \cap G_{ik}(\psi)$.

• We say that Y is generic with respect to G if for all distinct indices i, j, k and $\psi \in \mathbb{R}^N$ we have

$$\mathcal{H}^{d-1}(G_{ijk}(\psi))=0$$

.

• We say that Y is generic with respect to X if for all distinct indices i,j and $\psi \in \mathbb{R}^N$ we have

$$\mathcal{H}^{d-1}(G_{ij}(\psi)\cap\partial X)=0$$

Conditions on the Generating function

• The regularity condition: $(x, y, v) \mapsto G(x, y, v)$ is continuously differentiable in x and v, and

$$\forall \alpha \in \mathbb{R}, \sup_{(x,y,v) \in \Omega \times Y \times]-\infty, \alpha]} |G_{x}(x,y,v)| < +\infty$$
 (Reg)

• The monotonicity condition:

$$\forall (x, y, v) \in \Omega \times Y \times \mathbb{R} : G_v(x, y, v) < 0$$
 (Mono)

• The twist condition:

Non-imaging optics

$$(y,v)\mapsto (G(x,y,v),G_x(x,y,v))$$
 is injective for any $x\in X$ (Twist)

• The uniform convergence condition:

$$\forall y \in Y, \lim_{v \to -\infty} \inf_{y \in \Omega} G(x, y, v) = +\infty$$
 (UC)