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Nonimaging optics

Transfer of light from a source to a target.

INPUT:

Light source, measure µ.

Destination target, measure ν.

OUTPUT:

A mirror surface S reflecting µ on ν.
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Semi-discrete setup

Source Ω ⊂ Rd , with intensity µ(E ) =
∫
E ρ(x)dx

Target Y = (yi )1≤i≤N , with intensity ν =
∑

i νiδyi .

Mass balance: µ(Ω) = ν(Y ).
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Far field reflector problem

We choose S to be a maximum of planes, so it is the graph of

u : x → max
1≤i≤N

〈x , pi 〉 − ψi .
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Far field reflector problem

Vi (ψ) = {x ∈ Ω|∀j : 〈x , pi 〉 − ψi ≥ 〈x , pj〉 − ψj}

Far field reflector problem:

Find ψ = (ψi )1≤i≤N s.t. ∀i : µ(Vi (ψ)) = νi

Linear in ψ → Optimal transport
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Near field reflector problem

Here, Σ is a maximum of paraboloids of focus yi .

u(x) = max
1≤i≤N

1

2ψi
− ψi

2
||x − yi ||2
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Near field reflector problem

Vi (ψ) =

{
x ∈ Ω|∀j :

1

2ψi
− ψi

2
||x − yi ||2 ≥

1

2ψj
−
ψj

2
||x − yj ||2

}
Near field reflector problem:

Find ψ = (ψi )1≤i≤N s.t. ∀i ∈ J1,NK : µ(Vi (ψ)) = νi

Not linear in ψ → Not optimal transport
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Comparison of the diagrams

(a) (Vi )1≤i≤N in the Far field case. (b) (Vi )1≤i≤N in the Near field case.

Figure 1: Comparison of Power and Mobius Diagram
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Generating function

Definition (Generating function)

A function G : Ω× Y × R→ R is called a generating function if it
satisfies (Reg), (Mono), (Twist) and (UC).

Definition (Generalized Laguerre cells)

We define the generalized Laguerre cells associated to a generating
function G for i ∈ J1,NK by

Lagi (ψ) = {x ∈ Ω|∀j ∈ J1,NK,G (x , yi , ψi ) ≥ G (x , yj , ψj)}

Far field parallel reflector:

G (x , y , v) = 〈x , p〉 − v

Near field parallel reflector:

G (x , y , v) =
1

2v
− v

2
||x − y ||2
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Semi-discrete Generated Jacobian equation (Trudinger, 14)

The generated Jacobian equation consists in finding ψ ∈ RN such that

H(ψ) = ν (GJE)

where the function H is given by H(ψ) = (µ(Lagi (ψ)))1≤i≤N .

Generalizes semi-discrete O.T. problems (in the dual form).
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Differential of H

Proposition

Under an hypothesis of genericity of Y , H is of class C1 and for i 6= j :
∂Hj

∂ψi
(ψ) =

∫
Lagij (ψ)

ρ(x)
|Gv (x , yi , ψi )|

||Gx(x , yj , ψj)− Gx(x , yi , ψi )||
dHd−1(x) ≥ 0

∂Hi

∂ψi
(ψ) = −

∑
j 6=i

∂Hj

∂ψi
(ψ)

Lag  (ψ) Lag  (ψ)

Lag  (ψ)ij

i j

Lag  (ψ+ te )ij

Lag  (ψ)ij

j
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Properties of DH

S+ =
{
ψ ∈ RN |∀i ,Hi (ψ) > 0

}
Proposition

DH(ψ) the differential of H is of rank N − 1 on S+.

The image of DH is im(DH(ψ)) = 1
⊥ where 1 = (1, · · · , 1) ∈ RN .

ker(DH(ψ)) = span(w) with wi > 0.

Proposition (Unique descent direction)

Let ψ ∈ S+, then the system:{
DH(ψ)u = H(ψ)− ν
u1 = 0

(1)

has a unique solution. 12 / 21
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Newton algorithm to solve Generated Jacobian Equations

Sδ =
{
ψ ∈ {α} × [β, γ](N−1)|∀i ∈ J1,NK,Hi (ψ) ≥ δ

}
Require: ψ0 ∈ Sδ and precision ε
Ensure: ψ such that ||H(ψ)− ν|| ≤ ε

1: k ← 0
2: while ||H(ψk)− ν|| > ε do
3: Compute the descent direction uk solution of (1)
4: Let ψk,τ = ψk − τuk , we compute

τk = max
{
τ ∈ 2−N, ||H(ψk,τ )− ν|| ≤ (1− τ

2
)||H(ψk)− ν||

}
under the condition ψk,τ ∈ Sδ.

5: ψk+1 ← ψk − τkuk and k ← k + 1
6: end while
7: return ψk
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Convergence of the algorithm

Theorem

If Ω is a connected compact set, and under some assumptions on Y . If
we choose 2δ ≤ min

1≤i≤N
νi , then the algorithm converges in a finite

number of steps.

Sketch of proof

K δ = {ψ ∈ Sδ, ||H(ψ)− ν|| ≤ ||H(ψ0)− ν||} is a non empty compact
set.
At any iteration, we have ψk ∈ K δ.
By compactness, for any k ∈ N, τk ≥ τmin which gives:

||H(ψk)− ν)|| ≤
(

1− τmin

2

)k
||H(ψ0)− ν||
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Implementation for the near field reflector

Figure 2: Near field reflector problem
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Computing the diagram

Möbius diagram

Vi = {x ∈ Ω|∀j ∈ J1,NK : λi ||x − pi ||2 − µi ≤ λj ||x − pj ||2 − µj}

Power diagram

Powi = {x ∈ Ω|∀j ∈ J1,NK : ||x − ci ||2 − ri ≤ ||x − cj ||2 − rj}

Lemma (Boissonnat,Wormser,Yvinec,07)

Vi = Π(Powi ∩ P)

with Vi ⊂ Rn × {0}, Powi ⊂ Rn+1 and P = {(x , ||x ||2)|x ∈ Rn} ⊂ Rn+1.
Π is the orthogonal projection of Rn+1 on Rn × {0}.
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Newton algorithm for 5000 points

Figure 3: Initial and final diagram for 5000 points
Ω = [−1, 1]2 and Y ⊂ [0, 1]2
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Convergence rate
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Conclusion

Contribution

Adaptation of an algorithm for O.T. to generated Jacobian
equations.

Proof of convergence

Implementation for the Near Field reflector.

Perspectives

Uniqueness to (GJE) (semi-discrete case).

initilization of the algorithm.
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Genericity of Y

Definition

(Genericity of Y). For i , j , k three distinct indices in J1,NK, we define
Gij(ψ) = {x ∈ Ω|G (x , yi , ψi ) = G (x , yj , ψj)} and
Gijk(ψ) = Gij(ψ) ∩ Gik(ψ).

We say that Y is generic with respect to G if for all distinct indices
i , j , k and ψ ∈ RN we have

Hd−1(Gijk(ψ)) = 0

.

We say that Y is generic with respect to X if for all distinct indices
i , j and ψ ∈ RN we have

Hd−1(Gij(ψ) ∩ ∂X ) = 0
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Conditions on the Generating function

The regularity condition: (x , y , v) 7→ G (x , y , v) is continuously
differentiable in x and v , and

∀α ∈ R, sup
(x ,y ,v)∈Ω×Y×]−∞,α]

|Gx(x , y , v)| < +∞ (Reg)

The monotonicity condition:

∀(x , y , v) ∈ Ω× Y × R : Gv (x , y , v) < 0 (Mono)

The twist condition:

(y , v) 7→ (G (x , y , v),Gx(x , y , v)) is injective for any x ∈ X
(Twist)

The uniform convergence condition:

∀y ∈ Y , lim
v→−∞

inf
x∈Ω

G (x , y , v) = +∞ (UC)
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