New tools for surface analysis

Julie Digne
Joint work with Sébastien Valette, Raphaélle Chaine and Yohann Béarzi

LIRIS - CNRS / Univ. Lyon

DGDCV - CIRM - 02/04/2021

1/49



Sampled surfaces
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Sampled surfaces
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Local Shape Analysis

» Surface normals
» Surface Curvatures
» Curvature lines

[Ohtake et al. 2004]

Estimation

Need to estimate differential quantities on sampled surfaces.
= Can be irregularly sampled, noisy, missing data.
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Curvature Estimation
On point sets:
» Osculating Jets [Cazals 03], Wavejets [Béarzi 2018]
» Voronoi Curvature Measure [Mérigot 10]
» Curvature tensor estimation [Kalogerakis 07,09]
On meshes
» Curvature and Curvature derivatives estimation [Rusinkiewicz03]
» Normal Cycles [Morvan, Cohen-Steiner 03]
» Laplace Beltrami discretization [Meyer02, Wardetzky07, Vallet08]

Per point/vertex computation
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Tangent Vector Fields

Goal

Compute a smooth tangent vector field with user-prescribed constraints
optimizing some regularity criterion.

» N-symmetry direction fields [Ray 08]
» Equivalent to a Riemannian metric design problem [Lai 10]

» Smoothness constraints [Cranel0,Knoppell3], symmetry constraints
[Panozzol4]

More global methods: permit to constrain directions from a global point of view.
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Higher order Information?

» Curvature derivatives: helps finding suggestive contours [Rusinkiewicz 03]

In this talk

Can we define principal directions of higher order, and would they reveal
something on the surface?
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Assumptions
Underlying surface S:

» S can locally be expressed as a height field over a planar parameterization in
neighborhoods of fixed radius r

» S is smooth, C*°

Discretization
» Sampling condition: r-neighborhood of a seed containing enough points.

» Noise level: Noise magnitude strictly below radius r.
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Local surface representation
Height-fields

» Height-field over a plane:

p(X,y,/’l: f(Xay))

» Taylor expansion at (0, 0)

ook
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A small detour by symmetric tensors

Def. symmetric tensor

A m-dimensional symmetric tensor T of order k is a m-dimensional array such
that given index | = (ij)je[o,m], for any permutation p on I, T = T,

> m=2letv={(x,y), T =(Tx, T,) symmetric tensor of order k, then
Tv=xT +yT,.

» Tv is a symmetric tensor of order k — 1

» T is the result of contracting T by v j times.
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E-eigenvalues of symmetric tensors

Eigenvalues [Qi 2005,2006,2007]

Given T a symmetric tensor of order k, if there exists A € C and a vector v € R?

such that: -
Tve—" = Av
{2 1)

Then X is called an E-eigenvalue of T and v is called an E-eigenvector of T.
The set of \ satisfying (??) are the roots of a polynomial called the
E-characteristic polynomial.

Disclaimer

Nomenclatura: Supermatrix [Qi] or Tensor.
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Arbitrary order differential tensor

Differential tensor
f defined on R? with values in R. T is a symmetric tensor of order k, where
coefficients are as follows: let xg = x,x; =y,

okf
(T)Gio,--i0) = g5 (0:0) (2)
A

Writing f with T
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Tensor differentiation

Expansion

Differentiating a symmetric tensor of order k, T(v) wrt a vector v yields a
symmetric tensor of order k + 1

Lemma

Let T be a symmetric tensor. Let v = (x,y)" € R? be a vector.

AT vk

o = kTvk1 (4)
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Eigenvectors

Theorem

Given v = (x,y), Tk a real symmetric tensor of order k > 1 representing the
derivatives of order k of a smooth function f in C¥, the set of vectors
v = (x,y) = (rcos0,rsinf) such that & T,v* =0 and ||v|| =1 are
E-eigenvectors of Ty:
Twvk—t = vT, vk
5
U= =
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Sketch of the proof

» Show that %Tkvk = éTkv
k
» Show that T,vk—1 = ﬁ‘k/h@ v

» Since ||v|| = 1 and by setting A = T,v, we get Tyvk—! = \v.
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Expressing T in the Wavejets basis

» Switching to polar coordinates v = (x,y) = (rcos0, rsinf)
> Wavejets Basis definition:

0o k

[e%e) k
=3 GknBin(r )= Z Grnr* e

k=0 n=—k k=0 n=—
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Wavejets Basis [Béarzi et al. 2018]

Bii+Bi,—1

Bs1+ Bz 1
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Consequence

Corollary

Given v = (x, y), the directions of the E-eigenvectors of a tensor Ty of order k
can be retrieved out of the Wavejet decomposition of T,v* by looking at the

zeros of:
K

k
% Z ¢k,nein9 _ Z in¢k7nein9 (6)

n=—k n=—k

Principal directions

For any order k we can extract eigenvectors of the k' order symmetric tensor
corresponding to the k" order differential tensor
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Maximum and Minimum Principal Curvatures

Definition

Maximum principal directions (resp. minimum principal directions) correspond to
ing _ Ti(rcosf.rsin0)*

local maxima (resp. local minima) of gx(6) = Zﬁsz ®k,n€ —
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Principal directions

» Principal curvatures:

K1 =2(¢2,0 + P22+ ¢2,—2) and ky =2 (20 — P22 — ¢2,-2) (7)

> > _acn<o ¢27,,e"”0 —+ ¢27_,,e*""9 has 2 maxima aligned with the principal
n even
directions
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Higher order principal directions

Order 3
> > <3036 + ¢3_,e7 " has at most 3 maxima (either 1 or 3)
n odd

Order 3 maxima directions
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Synthetic Examples

Two synthetic surfaces with relevant principal directions of order 3 and order 8.
Other orders vanish and exhibit no principal directions.
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Synthetic Examples

Order 3 principal directions on a synthetic surface controlled by its Wavejets
coefficients.
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Properties of order k directions

> If k is even: if Oy corresponds to a maximum principal direction, 6y + 7 also
corresponds to a maximum principal direction.

> If k is odd: if 6y corresponds to a maximum principal direction, 0y + 7
corresponds to a minimum principal direction.

» At most 2k principal directions of order k (roots of a real polynomial of
order 2k)

» Regularity: Order k principal directions are regular iff ¢, , = 0 fo n # £k.
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Practical computation: Truncating the Taylor

Expansion
Osculating Jets [Cazals03]

» Surface parameterized w.r.t. P(p) Not necessarily equal to 7(p) (tangent
plane)

Truncated Taylor expansion

S surface locally homeomorphic to a disk in a small neighborhood around a point
p, expressed as f(x,y) over a plane P(p) passing through p. The neighborhood
of p can be expressed as a truncated Taylor Expansion at order K:

) =33 T ©

o okF
where f«—j,; = Bxk—1oyl -
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Practical computation: Truncation order

Accuracy theorem [Cazals03]

Given a Taylor expansion of order K in a neighborhood of radius r, the precision
of all k order derivatives is o(r¥=k).

» In practice: Computation of the
coefficients at each vertex or point
by linear system solve.

[Cazals 2003]
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Practical computation

Wavejets

The Wavejets expansion can be truncated similarly to the Osculating Jets
expansion.

022 [03.1] 03] [04.2] 044
» (re,00, he)seqi,ny : local coordinates around p(0, 0)
Bo,o(r1,01) By, _1(r,61)  Bya(r,61) By, k(r1s 01) (j)o‘o hy
Bo,o(r2:02)  B1 —1(2,62)  B1,1(r2, 62) By, k(r2, 02) P ha
% $1,1

80,00 ) Bi,—1(rns On)  Bialrn, On) Bic k(> ) bK K hn
—— N~

M @ H

» Solve using QR decomposition
argmin||[M® — H||?
(o)
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Properties

» Adding a weight depending on the distance of the neighbor to p
» If the weight is smooth and radially decreasing:

» (2 regression yields smooth coefficients [Levin15]....
» (! no such guarantee.
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Results

normals ®0,0 |p1.1] ®2.0 |2.2] |¢3,1] |33
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Experiments

Order 2 (top) and 3 (bottom) principal directions on a surface evolving from a
Introduction ridge (left) to a smooth T-junction (right). 30/49



Orders 2 to 7
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Orders 2 and 3
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With noise

Principal directions of order 2 and 3 computed on a cube with added Gaussian
noise on the positions. Top: Noiseless, o = 0.01%; Bottom: ¢ = 0.05% and
o =0.1%
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Dependency on the radius

Estimation with r = 50, 80, 100, 200.
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Limitations

» Parameters: radius r, truncation order K
» Distribution of the principal directions of a given order are not arbitrary!

Applications

Tracing lines on a surface with higher order junctions when directions of lower
| order are not defined.
nti




Integral Invariants

Integral Invariants

Integral quantities computed locally on a surface that are rotation and translation
invariant. [Manay2006, Pottmann2007, Pottmann2009]

S
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Wavejets

New integral invariants

> V(s):
> V(s) =

an

ék,0Bk,0 ok, +18k, +1 Tép, +2Bk +2 Ték, +38k +3

a0 2|31‘ 2|32| 2|a3|

signed volume between surface and tangent plane [Pottman09]
2T A6, 5)d6 = 2mag(s)

A8, s) :/ (Z Z Ok.nt e'”9> rdr = Z an(s)e™

k=0 n=—k n=-—o00

2n(s) = Z ¢2i2

k=|n]

Each |an(s)] is an integral invariant at scale s
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Application: Detail enhancement

Principle

$2.0B2,0 ¢3,-1B3,_1+ ¢3,1B31
Points acceleration Normals acceleration

> dk,0Bko > bk,+1Br 41

do 2|31|
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Position based detail enhancement

» For each (p, n)

p < p+21(l—ag)ag(s)n
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Normal based detail enhancement

» For each ¢ 41 in point set
> 141841
G141 (1 — agr)ata(s) Tangent plane error
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Skewing normals

» o7 € C can skew normals orientation
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Skewing normals
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Skewing normals

» a4 € C can skew normals orientation

oy = 2437
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Skewing normals

» o7 € C can skew normals orientation

Introduction 45/49



Skewing normals

» a4 € C can skew normals orientation

aq = 24e 3%
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Skewing normals

» a4 € C can skew normals orientation
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Skewing normals

» a4 € C can skew normals orientation
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Detail inversion

> ay >0
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Detail inversion

> ap <0
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Results

Normal vs Position enhancement

Original Normal Position
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Complexity per point
» Given a set of N neighbors and a Wavejet order K: O(NK*)

» Once the wavejet is computed, applying the filter amounts to summing K
terms: O(K)

» 1.5M points, order K = 6: Decomposition time 1min40s; Filtering time:
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Conclusion

» Introduction of a new function basis
» Extension of integral invariants
» Application to geometry processing, and more to explore

Work funded by ANR Grant PAPS
https://perso.liris.cnrs.fr/julie.digne/paps/anr_paps.html

Wavejets: A Local Frequency Framework for Shape Details Amplification, Y. Béarzi, J. Digne, R. Chaine
2018.
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https://perso.liris.cnrs.fr/julie.digne/paps/anr_paps.html

Another application: normal correction

AA S
AL
AA S
AL

AAS
AA S

PCA 2-jet 5-jet VCM Hough Hough CNN Wavejets

Normal estimation on two intersecting cylinders creating a sharp edge. First row :
Noise free, Second row : Gaussian noise 1.2% - Third row : Gaussian noise 3.6%
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