
New tools for surface analysis

Julie Digne
Joint work with Sébastien Valette, Raphaëlle Chaine and Yohann Béarzi

LIRIS - CNRS / Univ. Lyon

DGDCV - CIRM - 02/04/2021

1/49



Sampled surfaces

Musée de Lyon Fourvière, LIRIS, projet PAPS
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Sampled surfaces
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Local Shape Analysis

◮ Surface normals

◮ Surface Curvatures

◮ Curvature lines

[O
h
ta

ke
et

a
l.

2
0
0
4
]

Estimation

Need to estimate differential quantities on sampled surfaces.
⇒ Can be irregularly sampled, noisy, missing data.
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Curvature Estimation
On point sets:
◮ Osculating Jets [Cazals 03], Wavejets [Béarzi 2018]
◮ Voronoi Curvature Measure [Mérigot 10]
◮ Curvature tensor estimation [Kalogerakis 07,09]

On meshes
◮ Curvature and Curvature derivatives estimation [Rusinkiewicz03]
◮ Normal Cycles [Morvan, Cohen-Steiner 03]
◮ Laplace Beltrami discretization [Meyer02, Wardetzky07, Vallet08]

Per point/vertex computation
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Tangent Vector Fields

Goal

Compute a smooth tangent vector field with user-prescribed constraints
optimizing some regularity criterion.

◮ N-symmetry direction fields [Ray 08]

◮ Equivalent to a Riemannian metric design problem [Lai 10]

◮ Smoothness constraints [Crane10,Knoppel13], symmetry constraints
[Panozzo14]

More global methods: permit to constrain directions from a global point of view.
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Higher order Information?

◮ Curvature derivatives: helps finding suggestive contours [Rusinkiewicz 03]

In this talk

Can we define principal directions of higher order, and would they reveal
something on the surface?
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Assumptions

Underlying surface S:

◮ S can locally be expressed as a height field over a planar parameterization in
neighborhoods of fixed radius r

◮ S is smooth, C∞

Discretization

◮ Sampling condition: r -neighborhood of a seed containing enough points.

◮ Noise level: Noise magnitude strictly below radius r .
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Local surface representation
Height-fields

◮ Height-field over a plane:

p(x , y , h = f (x , y))

◮ Taylor expansion at (0, 0)

f (x , y) =

∞∑

k=0

k∑

i=0

1

(k − i)!i!

∂k f

∂x i∂yk−i
(0, 0)x iyk−i
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A small detour by symmetric tensors

Def. symmetric tensor

A m-dimensional symmetric tensor T of order k is a m-dimensional array such
that given index I = (ij)j∈J0,mK, for any permutation p on I, TI = Tp(I)

◮ m = 2 let v = (x , y), T = (Tx , Ty ) symmetric tensor of order k, then
Tv = xTx + yTy .

◮ Tv is a symmetric tensor of order k − 1

◮ Tv j is the result of contracting T by v j times.
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E -eigenvalues of symmetric tensors

Eigenvalues [Qi 2005,2006,2007]

Given T a symmetric tensor of order k, if there exists λ ∈ C and a vector v ∈ R
2

such that: {
Tvk−1 = λv

vT v = 1
(1)

Then λ is called an E -eigenvalue of T and v is called an E -eigenvector of T .
The set of λ satisfying (??) are the roots of a polynomial called the
E -characteristic polynomial.

Disclaimer

Nomenclatura: Supermatrix [Qi] or Tensor.
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Arbitrary order differential tensor

Differential tensor

f defined on R
2 with values in R. Tk is a symmetric tensor of order k, where

coefficients are as follows: let x0 = x , x1 = y ,

(Tk)(i0,...,ik ) =
∂k f

∂xi0 . . . ∂xik

(0, 0) (2)

Tkvk =
k∑

i=0

(
k

i

)
∂k f

∂ ix∂k−iy
(0, 0)x iyk−i (3)

Writing f with Tk

f (v) =
∞∑

k=0

1

k!
Tkvk + o(‖v‖K )
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Tensor differentiation

Expansion

Differentiating a symmetric tensor of order k, T (v) wrt a vector v yields a
symmetric tensor of order k + 1

Lemma

Let T be a symmetric tensor. Let v = (x , y)T ∈ R
2 be a vector.

∂Tvk

∂v
= kTvk−1 (4)
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Eigenvectors

Theorem

Given v = (x , y), Tk a real symmetric tensor of order k > 1 representing the

derivatives of order k of a smooth function f in Ck , the set of vectors

v = (x , y) = (r cos θ, r sin θ) such that ∂
∂θ

Tkvk = 0 and ‖v‖ = 1 are

E-eigenvectors of Tk :
{

Tkvk−1 = vTkvk

‖v‖ = 1
(5)
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Sketch of the proof

◮ Show that ∂
∂r

Tkvk = k
r
Tkv

◮ Show that Tkvk−1 = Tk vk

‖v‖2 v

◮ Since ‖v‖ = 1 and by setting λ = Tkvk , we get Tkvk−1 = λv .
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Expressing T in the Wavejets basis

◮ Switching to polar coordinates v = (x , y) = (r cos θ, r sin θ)

◮ Wavejets Basis definition:

f (r , θ) =

∞∑

k=0

k∑

n=−k

φk,nBk,n(r , θ) =

∞∑

k=0

k∑

n=−k

φk,nr ke inθ
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Wavejets Basis [Béarzi et al. 2018]

B0,0 B2,0 B2,2 + B2,−2

B1,1 + B1,−1 B3,1 + B3,−1 B3,3 + B3,−3
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Consequence

Corollary

Given v = (x , y), the directions of the E -eigenvectors of a tensor Tk of order k

can be retrieved out of the Wavejet decomposition of Tkvk by looking at the
zeros of:

∂

∂θ

k∑

n=−k

φk,ne inθ =

k∑

n=−k

inφk,ne inθ (6)

Principal directions

For any order k we can extract eigenvectors of the k th order symmetric tensor
corresponding to the k th order differential tensor
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Maximum and Minimum Principal Curvatures

Definition

Maximum principal directions (resp. minimum principal directions) correspond to

local maxima (resp. local minima) of gk(θ) =
∑k

n=−k φk,ne inθ = Tk (r cos θ,r sin θ)k

k!rk .
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Principal directions

◮ Principal curvatures:

κ1 = 2 (φ2,0 + φ2,2 + φ2,−2) and κ2 = 2 (φ2,0 − φ2,2 − φ2,−2) (7)

◮
∑

−2≤n≤2
n even

φ2,ne inθ + φ2,−ne−inθ has 2 maxima aligned with the principal

directions
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Higher order principal directions

Order 3

◮
∑

−n≤3
n odd

φ3,ne inθ + φ3,−ne−inθ has at most 3 maxima (either 1 or 3)

Order 3 maxima directions
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Synthetic Examples

Two synthetic surfaces with relevant principal directions of order 3 and order 8.
Other orders vanish and exhibit no principal directions.
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Synthetic Examples

Order 3 principal directions on a synthetic surface controlled by its Wavejets
coefficients.
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Properties of order k directions

◮ If k is even: if θ0 corresponds to a maximum principal direction, θ0 + π also
corresponds to a maximum principal direction.

◮ If k is odd: if θ0 corresponds to a maximum principal direction, θ0 + π

corresponds to a minimum principal direction.

◮ At most 2k principal directions of order k (roots of a real polynomial of
order 2k)

◮ Regularity: Order k principal directions are regular iff φk,n = 0 fo n 6= ±k.
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Practical computation: Truncating the Taylor
Expansion
Osculating Jets [Cazals03]

◮ Surface parameterized w.r.t. P(p) Not necessarily equal to T (p) (tangent
plane)

Truncated Taylor expansion

S surface locally homeomorphic to a disk in a small neighborhood around a point
p, expressed as f (x , y) over a plane P(p) passing through p. The neighborhood
of p can be expressed as a truncated Taylor Expansion at order K :

f (x , y) =
∞∑

k=0

K∑

j=0

fxk−j y j (0, 0)

(k − j)!j!
xk−jy j (8)

where fxk−j y j = ∂k f
∂xk−j ∂y j .
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Practical computation: Truncation order

Accuracy theorem [Cazals03]

Given a Taylor expansion of order K in a neighborhood of radius r , the precision
of all k order derivatives is o(rK−k).
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◮ In practice: Computation of the
coefficients at each vertex or point
by linear system solve.
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Practical computation

Wavejets

The Wavejets expansion can be truncated similarly to the Osculating Jets
expansion.

◮ (rℓ, θℓ, hℓ)ℓ∈J1,NK : local coordinates around p(0, 0)





B0,0(r1, θ1) B1,−1(r1, θ1) B1,1(r1, θ1) . . . BK,K (r1, θ1)

B0,0(r2, θ2) B1,−1(r2, θ2) B1,1(r2, θ2) . . . BK,K (r2, θ2)

.

.

.

.

.

.
B0,0(rN , θN ) B1,−1(rN , θN ) B1,1(rN , θN ) . . . BK,K (rN , θN )





︸ ︷︷ ︸

M

×






φ0,0
φ1,−1
φ1,1

.

.

.
φK,K






︸ ︷︷ ︸

Φ

=





h1
h2

.

.

.
hN





︸ ︷︷ ︸

H

◮ Solve using QR decomposition

argmin
Φ
‖MΦ− H‖2
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Properties

◮ Adding a weight depending on the distance of the neighbor to p

◮ If the weight is smooth and radially decreasing:
◮ ℓ2 regression yields smooth coefficients [Levin15]....
◮ ℓ1 no such guarantee.
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Results

Noisy
normals φ0,0 |φ1,1| φ2,0 |φ2,2| |φ3,1| |φ3,3|
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Experiments

Order 2 (top) and 3 (bottom) principal directions on a surface evolving from a
ridge (left) to a smooth T-junction (right).Introduction 30/49



Orders 2 to 7
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Orders 2 and 3

Introduction 32/49



With noise

Principal directions of order 2 and 3 computed on a cube with added Gaussian
noise on the positions. Top: Noiseless, σ = 0.01%; Bottom: σ = 0.05% and

σ = 0.1%
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Dependency on the radius

Estimation with r = 50, 80, 100, 200.
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Limitations
◮ Parameters: radius r , truncation order K
◮ Distribution of the principal directions of a given order are not arbitrary!

Applications

Tracing lines on a surface with higher order junctions when directions of lower
order are not defined.
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Integral Invariants

Integral Invariants

Integral quantities computed locally on a surface that are rotation and translation
invariant. [Manay2006, Pottmann2007, Pottmann2009]
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Wavejets
New integral invariants

= + + + + ...

Σφk,0Bk,0 Σφk,±1Bk,±1 Σφk,±2Bk,±2 Σφk,±3Bk,±3

a0 2|a1| 2|a2| 2|a3|

◮ V (s) : signed volume between surface and tangent plane [Pottman09]

◮ V (s) =
∫ 2π

0
A(θ, s)dθ = 2πa0(s)

A(θ, s) =

∫ s

0

(
∞∑

k=0

k∑

n=−k

φk,nr ke inθ

)

rdr =

∞∑

n=−∞

an(s)e inθ

an

an(s) =
∞∑

k=|n|

φk,nsk+2

k + 2

Each |an(s)| is an integral invariant at scale s
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Application: Detail enhancement
Principle

φ2,0B2,0 φ3,−1B3,−1 + φ3,1B3,1

Points acceleration Normals acceleration

= + + ...

∑
φk,0Bk,0

∑
φk,±1Bk,±1

a0 2|a1|
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Position based detail enhancement

◮ For each (p, n)

p ← p + 2π(1− α0)a0(s)n

→
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Normal based detail enhancement

◮ For each φ1,±1 in point set

φ1,±1 ← π(1− α±1)a±1(s)

∑
φ1,±1B1,±1

Tangent plane error

→
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Skewing normals

◮ α±1 ∈ C can skew normals orientation

→

α1 = 24
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Skewing normals

◮ α±1 ∈ C can skew normals orientation

→

α1 = 24e i π
4
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Skewing normals

◮ α±1 ∈ C can skew normals orientation

→

α1 = 24e i π
2
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Skewing normals

◮ α±1 ∈ C can skew normals orientation

→

α1 = 24e3 π
4
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Skewing normals

◮ α±1 ∈ C can skew normals orientation

→

α1 = −24
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Skewing normals

◮ α±1 ∈ C can skew normals orientation

→

α1 = 24e−3 π
4
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Skewing normals

◮ α±1 ∈ C can skew normals orientation

→

α1 = 24e− π
2
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Skewing normals

◮ α±1 ∈ C can skew normals orientation

→

α1 = 24e− π
4
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Detail inversion

◮ α±1 > 0

→

α1 = 24
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Detail inversion

◮ α±1 < 0

→

α1 = −24
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Results
Normal vs Position enhancement

Original Normal Position
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Complexity per point
◮ Given a set of N neighbors and a Wavejet order K : O(NK 4)

◮ Once the wavejet is computed, applying the filter amounts to summing K

terms: O(K )

◮ 1.5M points, order K = 6: Decomposition time 1min40s; Filtering time:
0.6s.
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Conclusion

◮ Introduction of a new function basis

◮ Extension of integral invariants

◮ Application to geometry processing, and more to explore

Work funded by ANR Grant PAPS
https://perso.liris.cnrs.fr/julie.digne/paps/anr_paps.html

Wavejets: A Local Frequency Framework for Shape Details Amplification, Y. Béarzi, J. Digne, R. Chaine
2018.
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Another application: normal correction

PCA 2-jet 5-jet VCM Hough Hough CNN Wavejets

Normal estimation on two intersecting cylinders creating a sharp edge. First row :
Noise free, Second row : Gaussian noise 1.2% - Third row : Gaussian noise 3.6%
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