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Power Watersheds and Contrast Invariance
Invariances in Image Data

Translation and Rotation Invariances

Translation of object does not affect the image class:

Convolutional Neural Nets are designed to utilize this inductive
bias with shared parameters!

Image Source 2

2On Translation Invariance in CNNs: Convolutional Layers can Exploit Absolute Spatial Location, CVPR 2020
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Invariances in Image Data

Contrast Invariance

Increasing/Decreasing contrast should not affect the object
boundaries

Image Source 3

3Alpert et al. Image segmentation by probabilistic bottom-up aggregation and cue integration. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, June 2007
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Invariances in Image Data

Edge-Weighted Graph Models for Images

G = (V , E , W ) : 4-adjacency edge-weighted graph

1 V :- Pixels
2 W : E → R :- Dissimilarity/Similarity between adjacent

pixels4

4depending on application at hand
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Invariances in Image Data

Contrast Invariance 6

G′ = (V , E , W ′) ↔ G = (V , E , W ): Same segmentation results

where W ′ = T ◦W with T ′ > 0 5

⇒ Segmentation should depend on relative ordering of edge
weights alone and not the actual weights!

5T ′ > 1 denotes increase in contrast, 0 < T ′ < 1 denotes decrease in contrast
6this is contrast defined using graph edge-based image gradients and hence is slightly different from classic

notion that uses border pixels as gradients
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Invariances in Image Data

Contrast Invariance: Illustration

Left: Image with two objects

Middle: Edge-weighted graph with weights denoting dissimilarity

Right: Doubled edge weights ≈ increase in contrast
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Exploiting Contrast Invariance using Power Watersheds

What is Power Watershed Framework?

Cost minimization problems on finite graphs 7

Minimize
Q(x) =

∑
eij∈E

f (wij)Qij(xi , xj) (1)

x: target labels of the nodes

wij : weight of edge eij

Qij : real-valued smooth function in two variables

f : increasing function

7also works for a more general cost form but combination of pairwise costs has some special properties
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Exploiting Contrast Invariance using Power Watersheds

Power Watershed Optimization Framework 8

Recast an optimization problem into Nested minimization problems

x(p) → x∗ (?)

where
x(p) = arg min

x
Q(p)(x)

and

Q(p)(x) =
∑

eij∈E
f (wij)pQij(xi , xj) (2)

8Laurent Najman. Extending the Power Watershed framework thanks to Γ-convergence. SIAM Journal on
Imaging Sciences, 10(4):2275–2292, November 2017.
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Exploiting Contrast Invariance using Power Watersheds

Why is Power Watershed Framework Useful?

1 Contrast Invariance:

limp→∞x(p) invariant to relative ordering of edge weights.

2 Empirically Similar Results:

arg minx Q(p)(x) ≈ arg minx Q(x)

3 Empirically Faster Computation:

The answer depends on a substructure of the image graph:
Union of Maximum/Minimum Spanning Trees
(Similarity/Dissimilarity) of the image graph
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Exploiting Contrast Invariance using Power Watersheds

What is a UMaxST/UMinST?

Left: Image Similarity Graph

Right: UMaxST: Induced subgraph with edges of all MaxSTs
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Exploiting Contrast Invariance using Power Watersheds

Computing the Power Watershed Solution

Rearrange
Q(p)(x) =

∑
eij∈E

f (wij)pQij(xi , xj) (3)

as

Q(p)(x) =
l∑

i=1
f (wi )pQi (x) (4)

such that f (wi ) < f (wj) if i < j and l : number of distinct weights
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Exploiting Contrast Invariance using Power Watersheds

Computing the Power Watershed Solution

Intuition: Higher weights dominate the cost in the limiting case

1 Set i = l and Mi is the entire solution space.
2 while i > 1

Compute the set of minimizers Mi−1 = arg minx∈Mi Qi (x)
3 Return arbitrary x ∈ M1.
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Exploiting Contrast Invariance using Power Watersheds

Intuition Behind the Algorithm

Q(p)(x1, x2) = wp
1

[
(x1 − 1)2 + x2

2

]
+ wp

2

[
(x1 − x2)2

]
(5)

where w1 = w and w2 = 2w

Direct computation:

x̂1
(p) = 2p

2p+1 + 1 (6)

x̂2
(p) = 2p + 1

2p+1 + 1 (7)

limp→∞x̂p = ( 1
2 , 1

2 )
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Exploiting Contrast Invariance using Power Watersheds

Intuition Behind the Algorithm

At first pass

Q(p)(x1, x2)
wp

2
= ((x1 − 1)2 + x2

2 )
2p + (x1 − x2)2 (8)

subspace M2 = {(x1, x2) ∈ R2 | x1 = x2}.

At second pass:

M1 = ( 1
2 , 1

2 )
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Selected Existing Applications

Fast Random Walker

Random Walker 9

Left: Image with two labels

Middle: Probability that node 1 is labelled blue

Right: Probability that node 1 is labelled red
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9Leo Grady. Random walks for image segmentation. IEEE PAMI, 28(11):1768–1783, 2006
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Selected Existing Applications

Fast Random Walker

Random Walker as a Cost Minimization

RWCost(x) = 1
2
∑

eij∈E
wij(xi − xj)2, (9)

subject to xseed = fseed , (10)
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Selected Existing Applications

Fast Random Walker

Random Walker: Matrix Solver

L =
(

Lseed B
BT LU

)
(11)

RWCost(x) = 1
2(xT

seedLseedxseed + 2xT
U BT xseed + xT

U LUxU), (12)

Solution satisfies:
LUxU = −BT xseed (13)

LUX = −BT S (14)
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Selected Existing Applications

Fast Random Walker

Power Watershed-based Random Walker 10

RWCost(p)(x) = 1
2
∑

eij∈E
wp

ij (xi − xj)2, (15)

subject to xseed = fseed , (16)

10Camille Couprie, Leo Grady, Laurent Najman, and Hugues Talbot. Power watershed: A unifying graph-based
optimization framework. IEEE Trans. Pattern Anal. Mach. Intell., 33(7):1384–1399, 2011.
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Selected Existing Applications

Fast Random Walker

Power Watershed-based Random Walker: A Nested
Random Walker

Left: Image with two labels

Right: First Pass of PW
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Selected Existing Applications

Fast Random Walker

Power Watershed-based Random Walker: A Nested
Random Walker

Left: Second Pass of PW

Right: Label of 6 obtained by solving a RW on a small subgraph
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Selected Existing Applications

Fast Isoperimetric Segmentation

Isoperimetric Segmentation

IsoCost(A) = W (A, Ā)
min{|A|, |Ā|}

, (17)

Avoids small cuts!
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Selected Existing Applications

Fast Isoperimetric Segmentation

Isoperimetric Partitioning: NP-Hard Problem

IsoCost(A) = xT Lx
min{xT 1, (1− x)T 1} , (18)

where

L: unnormalized graph Laplacian,

xi =
{

1 if i ∈ A
0 i ∈ Ā

(19)
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Selected Existing Applications

Fast Isoperimetric Segmentation

Continuous Relaxation Solution to Isoperimetric
Partitioning

Set xr = 0 and

Minimize
xT
−r L−r x−r

min{xT
−r 1, (1− x−r )T 1}

, subject to each xi ∈ [0, 1]

(20)

Lagrange Multipliers ⇒ Enough to solve

L−r x−r = 1 (21)



Power Watersheds and Contrast Invariance
Selected Existing Applications

Fast Isoperimetric Segmentation

Fast Isoperimetric Partitioning

Maximum spanning tree solver 11

LMaxST
−r x−r = 1 (22)

Power watershed solution 12

LUMaxST
−r x−r = 1 (23)

11Leo Grady. Fast, quality, segmentation of large volumes - isoperimetric distance trees. In Computer Vision -
ECCV 2006, 9th European Conference on Computer Vision, Graz, Austria, May 7-13, 2006, Proceedings, Part III,
pages 449–462, 2006.

12Sravan Danda, Aditya Challa, BS Daya Sagar, and Laurent Najman. Revisiting the isoperimetric graph
partitioning problem. IEEE Access, 7:50636–50649, 2019.
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Selected Existing Applications

Fast Isoperimetric Segmentation

Comparison of MaxST and UMaxST Solutions 14

Left: Matrix Solver on a MaxST vs Original Image graph.
Monotonous ⇒ consistent solutions 13

Middle: UMaxST vs Original Image Graph

Right: Boxplot of inversions

13Each color is the solution map comparison of an image.
14Sravan Danda, Aditya Challa, BS Daya Sagar, and Laurent Najman. Revisiting the isoperimetric graph

partitioning problem. IEEE Access, 7:50636–50649, 2019.
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Selected Existing Applications

Mutex Watershed: Power Watershed Approximation to Multi-Cut

Mutex Watershed: Graph-Cut for Simultaneous Similarity
and Dissimilarity 15

Left: An image graph capturing similarities and dissimilarities with
varied levels of confidence

Right: An ambiguous partitioning
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15Steffen Wolf et al. The mutex watershed and its objective: Efficient, parameter-free graph partitioning. IEEE
PAMI, 2020.
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Mutex Watershed: Power Watershed Approximation to Multi-Cut

Mutex Watershed: Greedy Approximation to Multi-Cut 16

Subject to the consistency constraint, minimizing cut edges is
same as minimizing negative sum of leftover edges:

Minimize Q(a) = −
∑
e∈E

aewe

subject to a ∈ {0, 1}|E |, C1(A) = ∅ with A = {e ∈ E |ae = 1}
(24)

NP-hard!

16Steffen Wolf et al. The mutex watershed and its objective: Efficient,
parameter-free graph partitioning. IEEE PAMI, 2020.
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Mutex Watershed: Power Watershed Approximation to Multi-Cut

Mutex Watershed: Greedy Approximation to Multi-Cut 17

Left: Adding edges greedily w.r.t. the confidence subject to cycle
constraint

Right: Final partitioning removing the dissimilar edges
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17Steffen Wolf et al. The mutex watershed and its objective: Efficient, parameter-free graph partitioning. IEEE
PAMI, 2020.
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Selected Existing Applications

Mutex Watershed: Power Watershed Approximation to Multi-Cut

Mutex Watershed: Power Watershed Approximation to
Multi-Cut

Minimize Q(p)(a) = −
∑
e∈E

aewp
e

subject to a ∈ {0, 1}|E |, C1(A) = ∅ with A = {e ∈ E |ae = 1}
(25)



Power Watersheds and Contrast Invariance
Selected Existing Applications

Mutex Watershed: Power Watershed Approximation to Multi-Cut

Mutex Watershed: Power Watershed Approximation to
Multi-Cut

Er = {e ∈ E |we = wr} for each 1 ≤ r ≤ l

wl > · · · > w1 are distinct weights
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Selected Existing Applications

Mutex Watershed: Power Watershed Approximation to Multi-Cut

Mutex Watershed: Power Watershed Approximation to
Multi-Cut

Level 1: No longer NP-Hard

Minimize −
∑
e∈El

ae

subject to a ∈ {0, 1}|El |, C1(A) = ∅ with A = {e ∈ El |ae = 1}
(26)

Al : Solution space
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Mutex Watershed: Power Watershed Approximation to Multi-Cut

Mutex Watershed: Power Watershed Approximation to
Multi-Cut

Level 2:

Minimize −
∑

e∈El−1

ae

subject to a ∈ {0, 1}|El−1|, C1(A) = ∅ with A = Al ∪ {e ∈ El−1|ae = 1}
(27)

Al−1: Solution space

Continue until edges at all l levels are exhausted
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Mutex Watershed: Power Watershed Approximation to Multi-Cut

A Glimpse of Other Applications: Fast Ratio Cut

Fast Spectral Clustering 18
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18Aditya Challa, Sravan Danda, B S Daya Sagar, and Laurent Najman. Power spectral clustering. Journal of
Mathematical Imaging and Vision, 62(9):1195-1213, 2020.
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Mutex Watershed: Power Watershed Approximation to Multi-Cut

A Glimpse of Other Applications: Fast Approximation to
Shortest Path Filters

Shortest path pairwise weights
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Mutex Watershed: Power Watershed Approximation to Multi-Cut

A Glimpse of Other Applications: Fast Approximation to
Shortest Path Filters

Tree Filter 19 as a PW approximation to Shortest Path Weighted Average
Filters 20
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19Bao et al. Tree filtering: Efficient structure-preserving smoothing with a minimum spanning tree. IEEE TIP,
23(2):555–569, 2014.

20Sravan Danda, Aditya Challa, B S Daya Sagar, and Laurent Najman. Some theoretical links between shortest
path filters and minimum spanning tree filters. Journal of Mathematical Imaging and Vision, 61(6):745-762, 2019
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Mutex Watershed: Power Watershed Approximation to Multi-Cut

A Glimpse of Other Applications: Fast Approximation to
Shortest Path Filters

Pairwise weights on UMinST act as PW approximation
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Summary

Summary and Perspectives

1 Scalability of image segmentation algorithms based on cost
optimization on graphs

2 Pairwise cost ⇒ Enough to work on UMaxST/UMinST
3 Can be used at test phase for end-to-end learned counterparts

of these algorithms 21

21end-to-end random walker for example: Lorenzo Cerrone, Alexander Zeilmann, and Fred A Hamprecht.
End-to-end learned random walker for seeded image segmentation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 12559–12568, 2019.
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