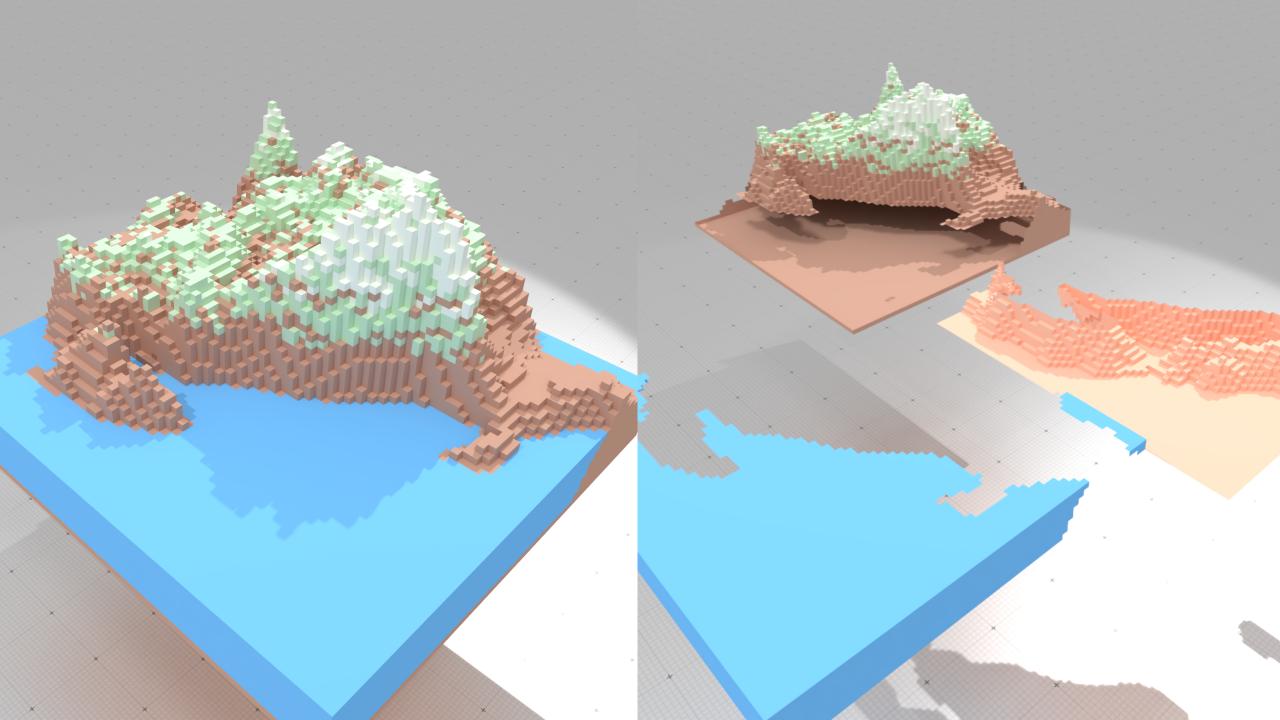
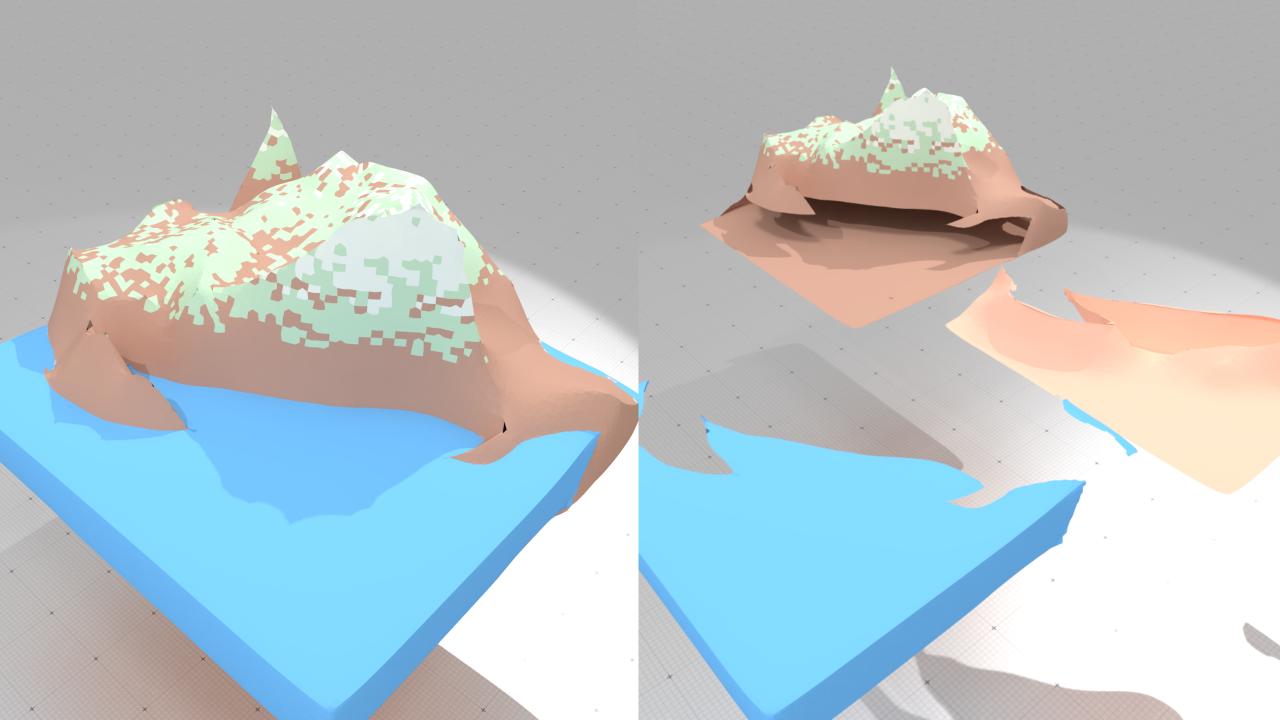
DIGITAL SURFACE REGULARIZATION WITH GUARANTEES

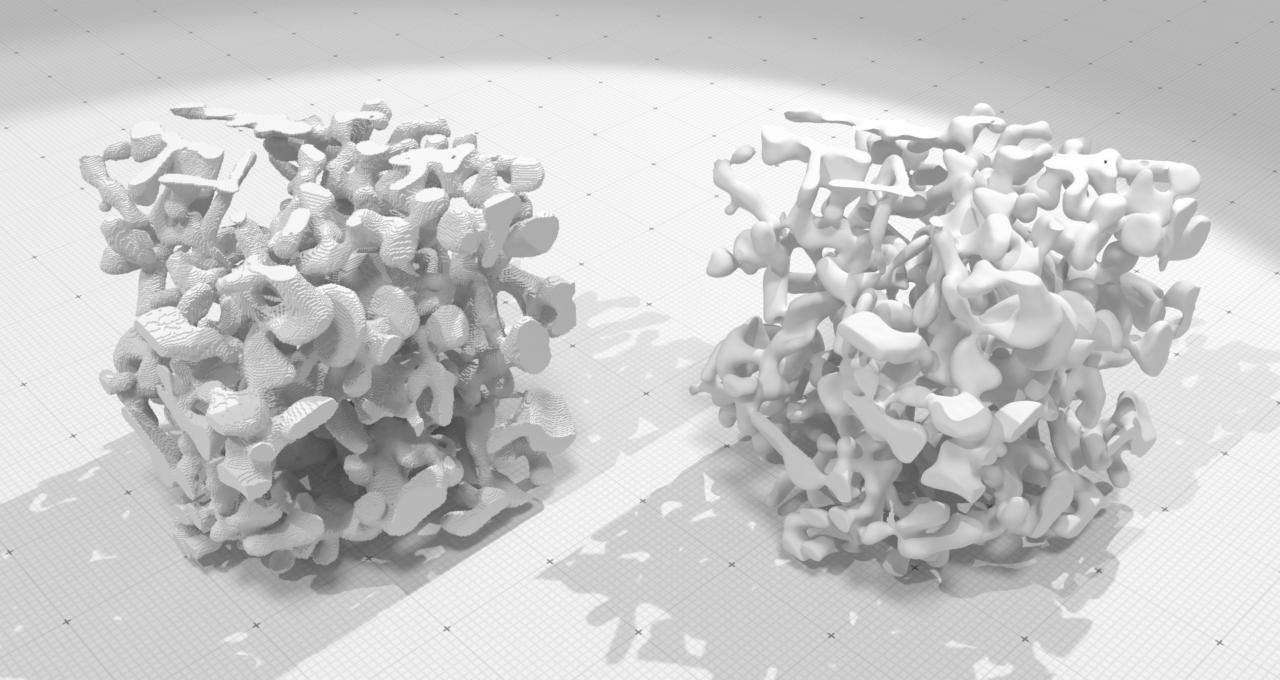
David Coeurjolly, CNRS, Lyon

Pierre Gueth, Adobe

Jacques-Olivier Lachaud, Univ. Savoie Mont-Blanc



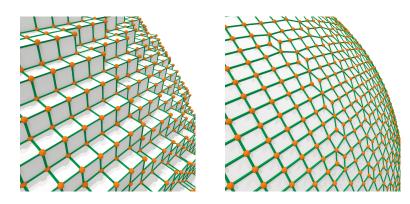




OBJECTIVES

Regularize the surface of a voxel set

with the same combinatorics,

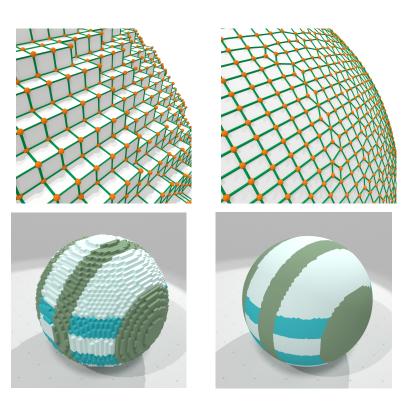


OBJECTIVES

Regularize the surface of a voxel set

with the same combinatorics,

with a voxel attributes mapping,



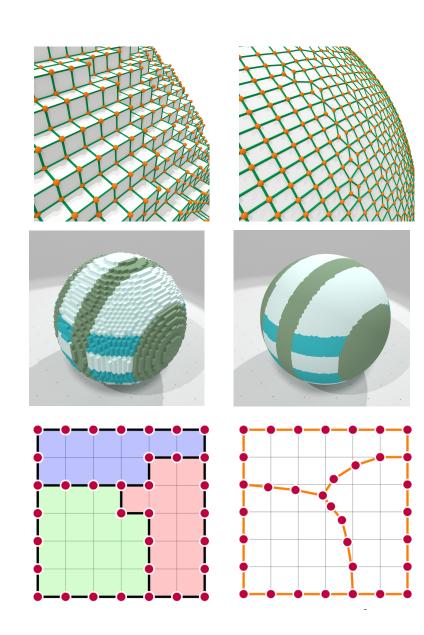
OBJECTIVES

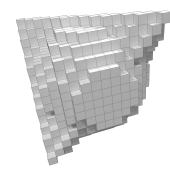
Regularize the surface of a voxel set

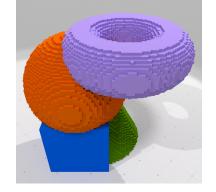
with the same combinatorics,

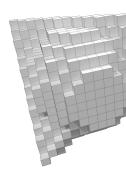
with a voxel attributes mapping,

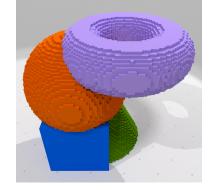
on labeled image interfaces







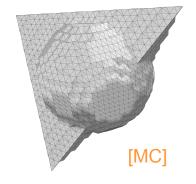


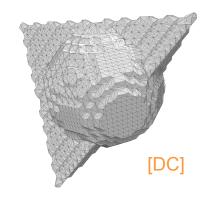


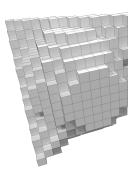
Iso-contouring approaches [Marching-Cubes (MC), Dual-contouring (DC)...]

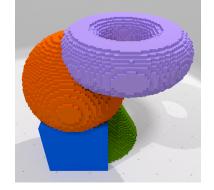
local construction of the mesh with fast algorithms (GPU friendly, multi-labeled images, adaptive...). Great for implicit functions / SDF

- sensitive to noise
- [DC] requires high quality Hermite data (position and normal vector)









Iso-contouring approaches [Marching-Cubes (MC), Dual-contouring (DC)...]

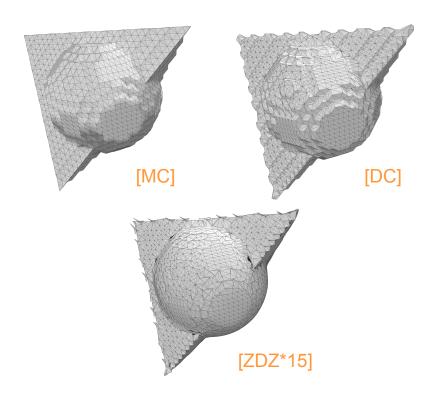
local construction of the mesh with fast algorithms (GPU friendly, multi-labeled images, adaptive...). Great for implicit functions / SDF

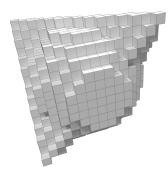
- sensitive to noise
- [DC] requires high quality Hermite data (position and normal vector)

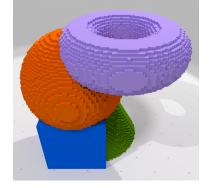
Surface denoising [HS13, WYL* 14, WZCF15, ZWZD15, ZDZ*15]

extract an iso-surface and apply feature preserving denoising

- remeshing may lose the mapping with the original voxel data
- sensitive to noise or low resolution voxel shapes







Iso-contouring approaches [Marching-Cubes (MC), Dual-contouring (DC)...]

local construction of the mesh with fast algorithms (GPU friendly, multi-labeled images, adaptive...). Great for implicit functions / SDF

- sensitive to noise
- [DC] requires high quality Hermite data (position and normal vector)

Surface denoising [HS13, WYL* 14, WZCF15, ZWZD15, ZDZ*15]

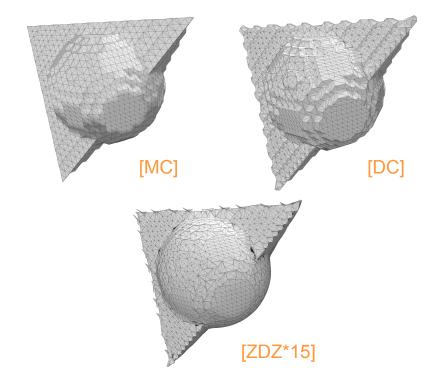
extract an iso-surface and apply feature preserving denoising

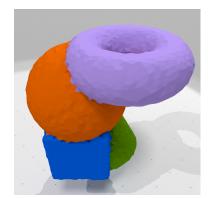
- remeshing may lose the mapping with the original voxel data
- sensitive to noise or low resolution voxel shapes

Volumetric reconstruction [LS07, DVS* 09, BYB09, BLW13, FTB16, AJR*17]

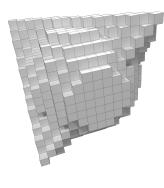
variational formulation to optimize the geometry of tetrahedra while preserving interfaces

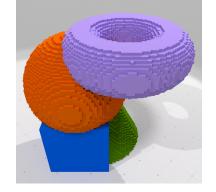
unon smooth interfaces for low resolution voxel shapes





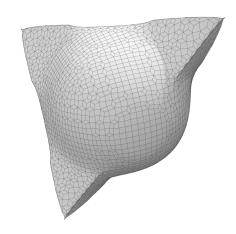
CONTRIBUTIONS

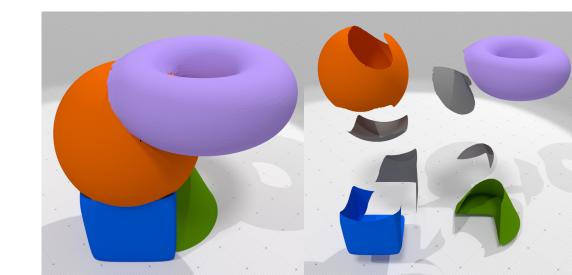


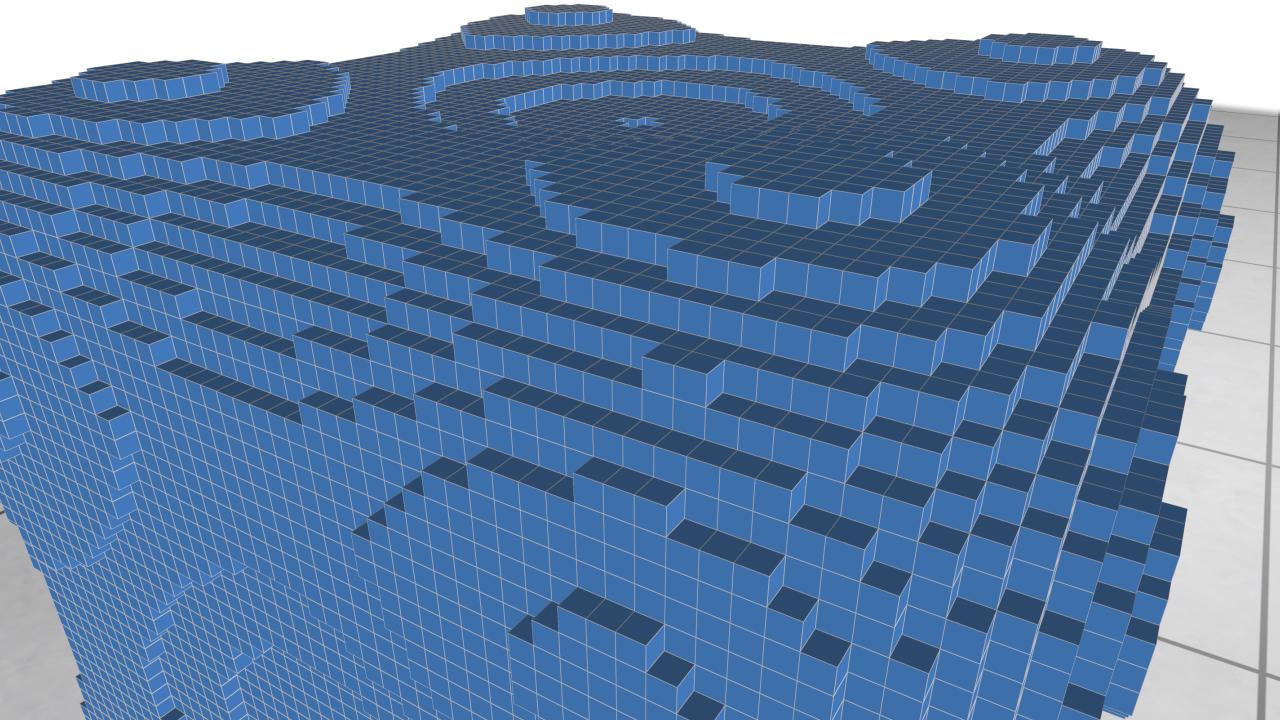


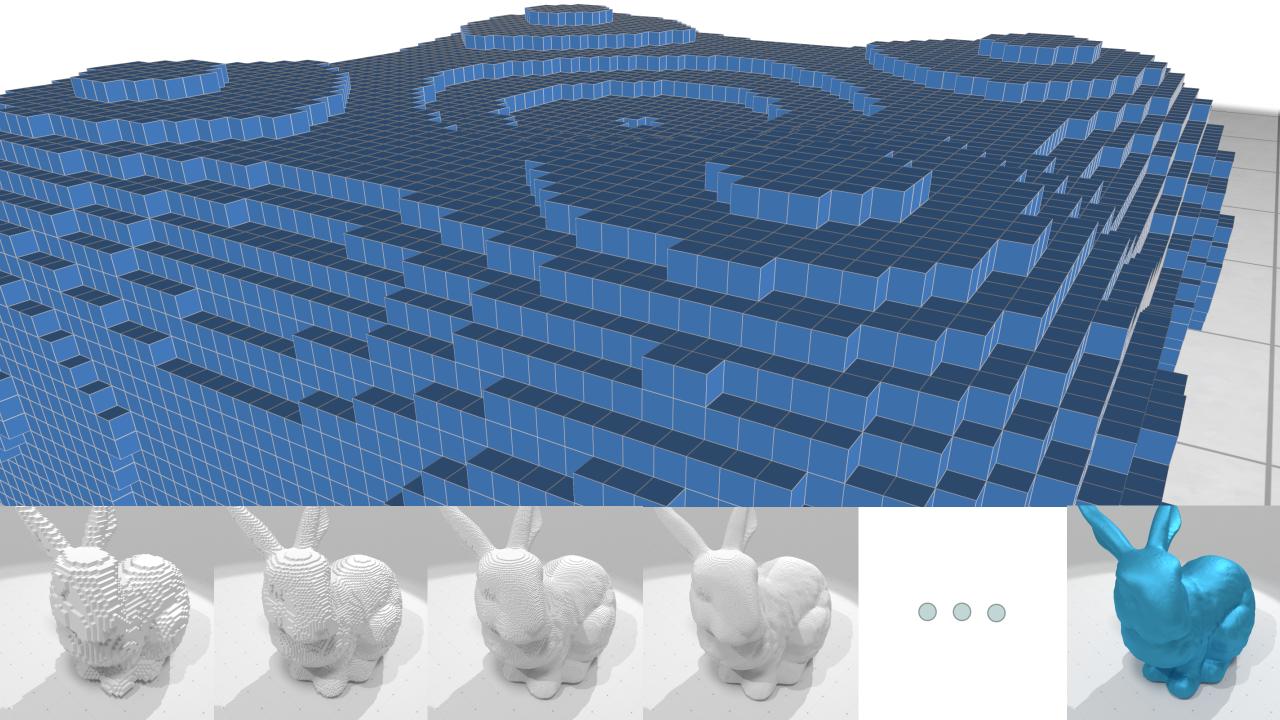
Digital surface regularization:

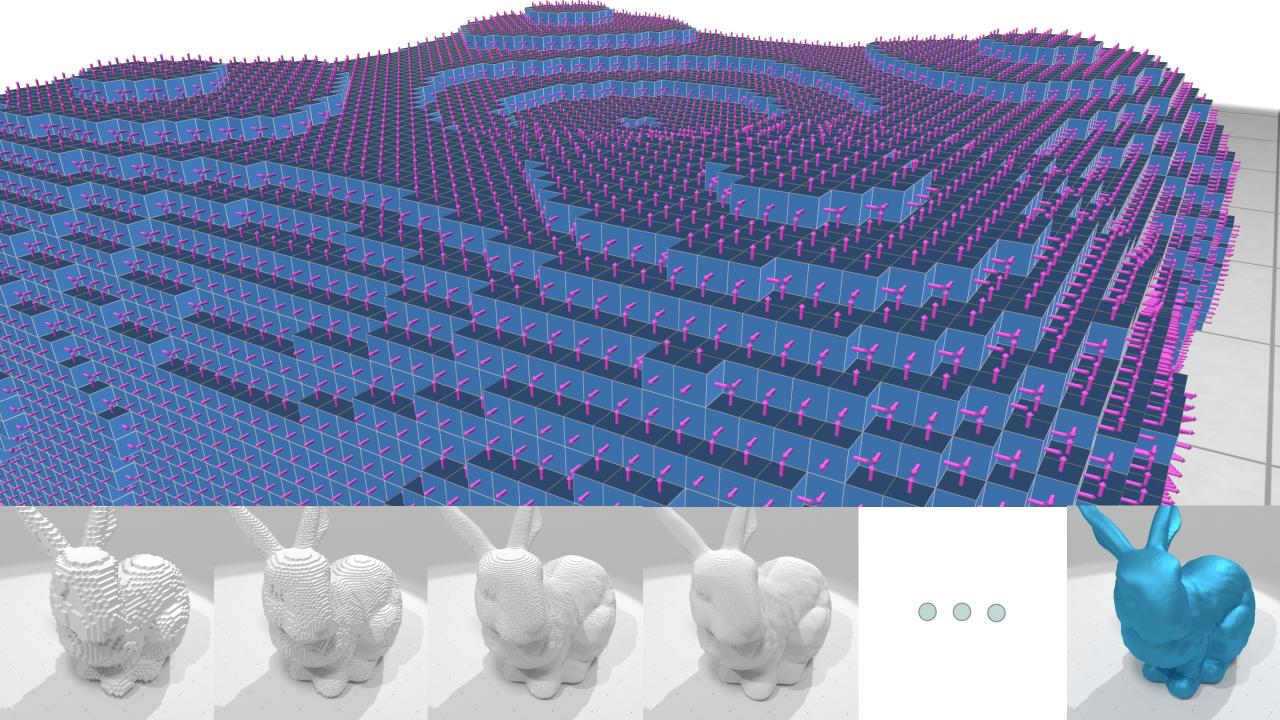
- robust from low to high-res, w/o noise
- easy to implement (convex energy function, GPU solvers)
- one-to-one mapping with input quads
- multi-labeled images
- stability results thanks to multigrid convergence



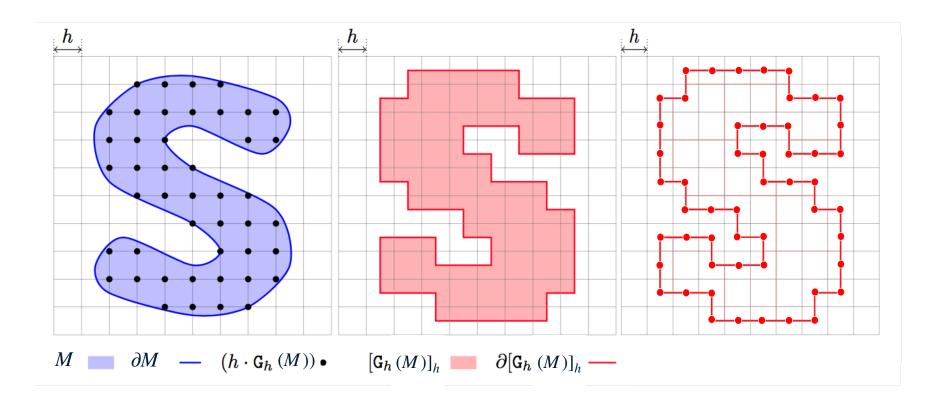




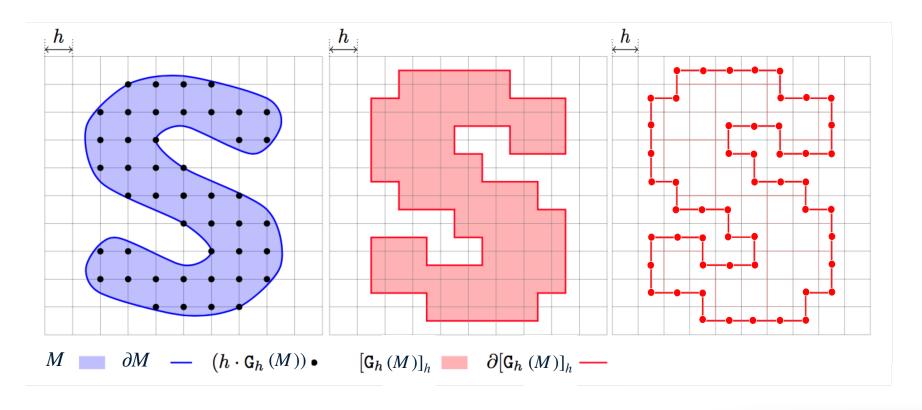




GEOMETRY PROCESSING ON DIGITAL DATA

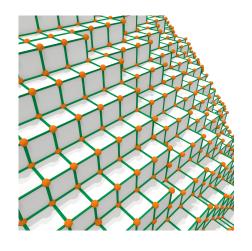


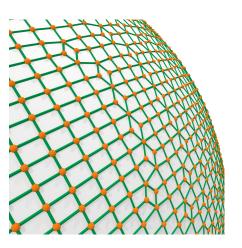
GEOMETRY PROCESSING ON DIGITAL DATA



For any compact domain $M \in \mathbb{R}^d$ such that ∂M has positive reach, and its digitization M_h on a grid with grid-step h, then $d_H(\partial M, \partial M_h) \leq \sqrt{d/2}h$ and the canonical projection map is one-to-one almost everywhere as h tends to zero.

VARIATIONAL FORMULATION





 $\mathscr{E}(\hat{P}) := \alpha \sum_{i=1}^{n} \|\mathbf{p}_i - \hat{\mathbf{p}}_i\|^2 + \beta \sum_{f \in F} \sum_{\hat{\mathbf{e}}_i \in \partial f} (\hat{\mathbf{e}}_j \cdot \mathbf{n}_f)^2 + \gamma \sum_{i=1}^{n} \|\hat{\mathbf{p}}_i - \hat{\mathbf{b}}_i\|^2$

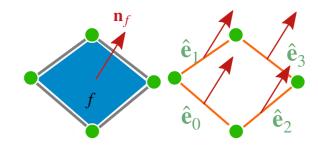
$$\mathscr{E}(\hat{P}) := \alpha \sum_{i=1}^{n} ||\mathbf{p}_i - \hat{\mathbf{p}}_i||^2 + \beta \sum_{f \in F} \sum_{\hat{\mathbf{e}}_j \in \partial f} (\hat{\mathbf{e}}_j \cdot \mathbf{n}_f)^2 + \gamma \sum_{i=1}^{n} ||\hat{\mathbf{p}}_i - \hat{\mathbf{b}}_i||^2$$

Data attachment term: points stay close to the original surface

$$\mathcal{E}(\hat{P}) := \alpha \sum_{i=1}^{n} \|\mathbf{p}_i - \hat{\mathbf{p}}_i\|^2 + \beta \sum_{f \in F} \sum_{\hat{\mathbf{e}}_j \in \partial f} (\hat{\mathbf{e}}_j \cdot \mathbf{n}_f)^2 + \gamma \sum_{i=1}^{n} \|\hat{\mathbf{p}}_i - \hat{\mathbf{b}}_i\|^2$$

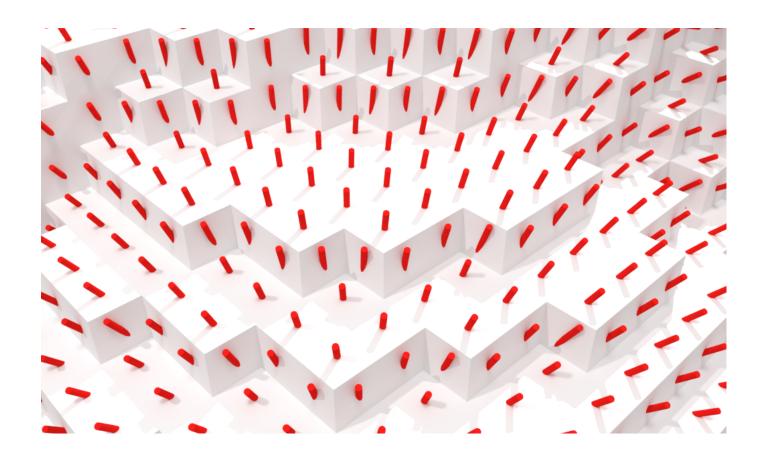
Data attachment term: points stay close to the original surface

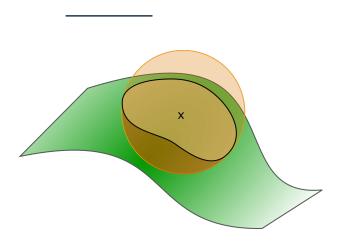
Alignment term: forces the quads to be perpendicular to the normal vector field



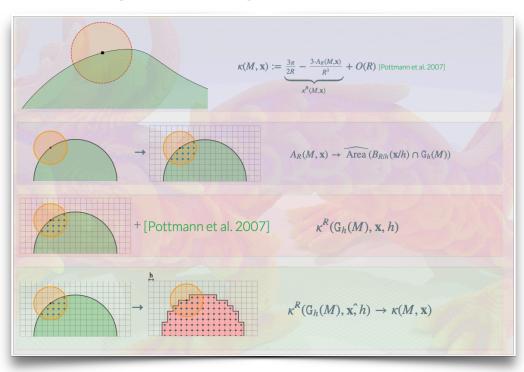
Normal vector per quad:

- Multigrid convergent estimation [CLL14]
- w/o feature preserving piecewise smooth reconstructions [BM12, CFGL16]

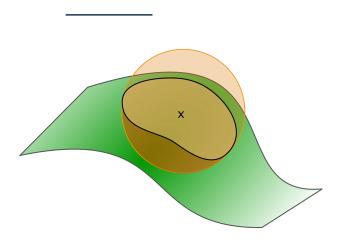




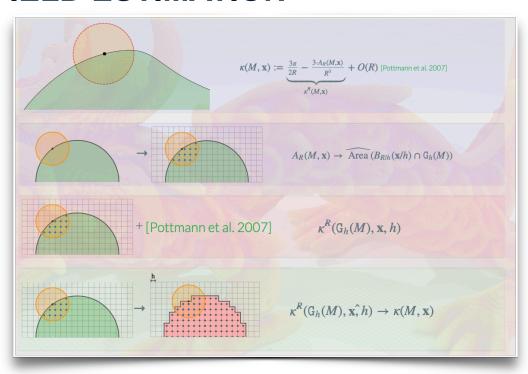
[CLL14] [LCL17] [LRTC20]



```
Let M be a convex shape in \mathbb{R}^2 with a C^3 bounded positive curvature boundary.  \forall \mathbf{x} \in \partial M, \forall \mathbf{x} \hat{\ } \in \partial [\mathbb{G}_h(M)]_h, \|\hat{x} - x\|_\infty \leq h \Rightarrow \\ |\kappa^R(\mathbb{G}_h(M), \mathbf{x}, h) - \kappa(M, \mathbf{x})| = O(R) \\ + O\left(\frac{h^\beta}{R^{1+\beta}}\right) \\ + O\left(\frac{h^{\alpha'}}{R^2}\right) + O\left(h^{\alpha'}\right) + O\left(\frac{h^{2\alpha'}}{R^2}\right)
```

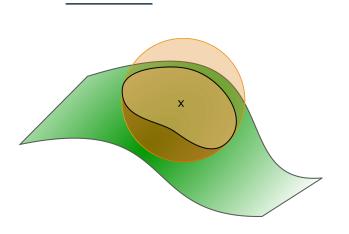


[CLL14] [LCL17] [LRTC20]

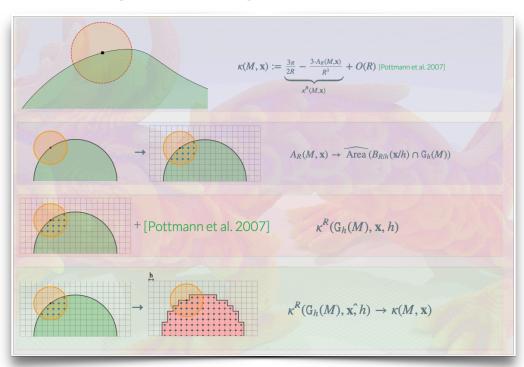


Let
$$M$$
 be a convex shape in \mathbb{R}^2 with a C^3 bounded positive curvature boundary.
$$\forall \mathbf{x} \in \partial M, \forall \mathbf{x} \hat{=} \partial [\mathbf{G}_h(M)]_h, \|\hat{x} - x\|_\infty \leq h \Rightarrow \\ |\kappa^R(\mathbf{G}_h(M), \mathbf{x}, h) - \kappa(M, \mathbf{x})| = O(R) \\ + O\left(\frac{h^\beta}{R^{1+\beta}}\right) \\ + O\left(\frac{h^{\alpha'}}{R^2}\right) + O\left(h^{\alpha'}\right) + O\left(\frac{h^{2\alpha'}}{R^2}\right)$$

$$\dots \| \hat{\mathbf{n}}(M_h, \xi(x))) - \mathbf{n}(M, x) \|_2 \le C \cdot h^{\frac{2}{3}}$$

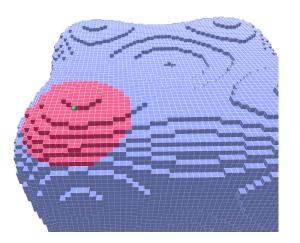


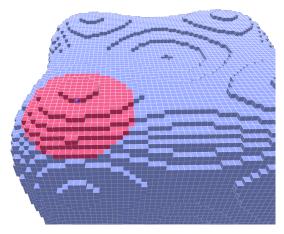
[CLL14] [LCL17] [LRTC20]

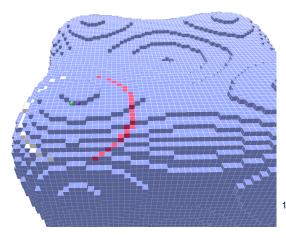


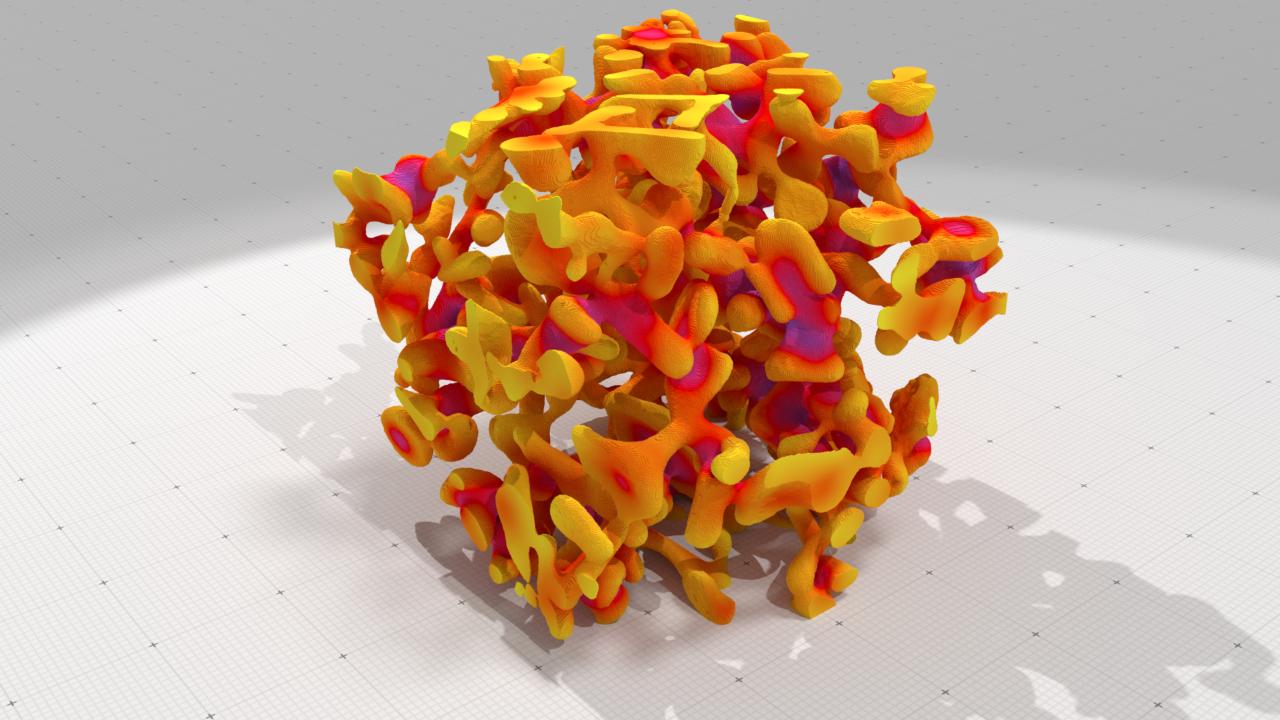
Let
$$M$$
 be a convex shape in \mathbb{R}^2 with a C^3 bounded positive curvature boundary.
$$\forall \mathbf{x} \in \partial M, \forall \mathbf{x} \hat{\ } \in \partial [\mathrm{G}_h(M)]_h, \|\mathbf{x} \hat{\ } - \mathbf{x}\|_\infty \leq h \Rightarrow \\ |\mathbf{x}^R(\mathrm{G}_h(M), \mathbf{x}, h) - \kappa(M, \mathbf{x})| = O(R) \\ + O\left(\frac{h^{\alpha}}{R^{1+\beta}}\right) \\ + O\left(\frac{h^{\alpha'}}{R^2}\right) + O\left(h^{\alpha'}\right) + O\left(\frac{h^{2\alpha'}}{R^2}\right)$$

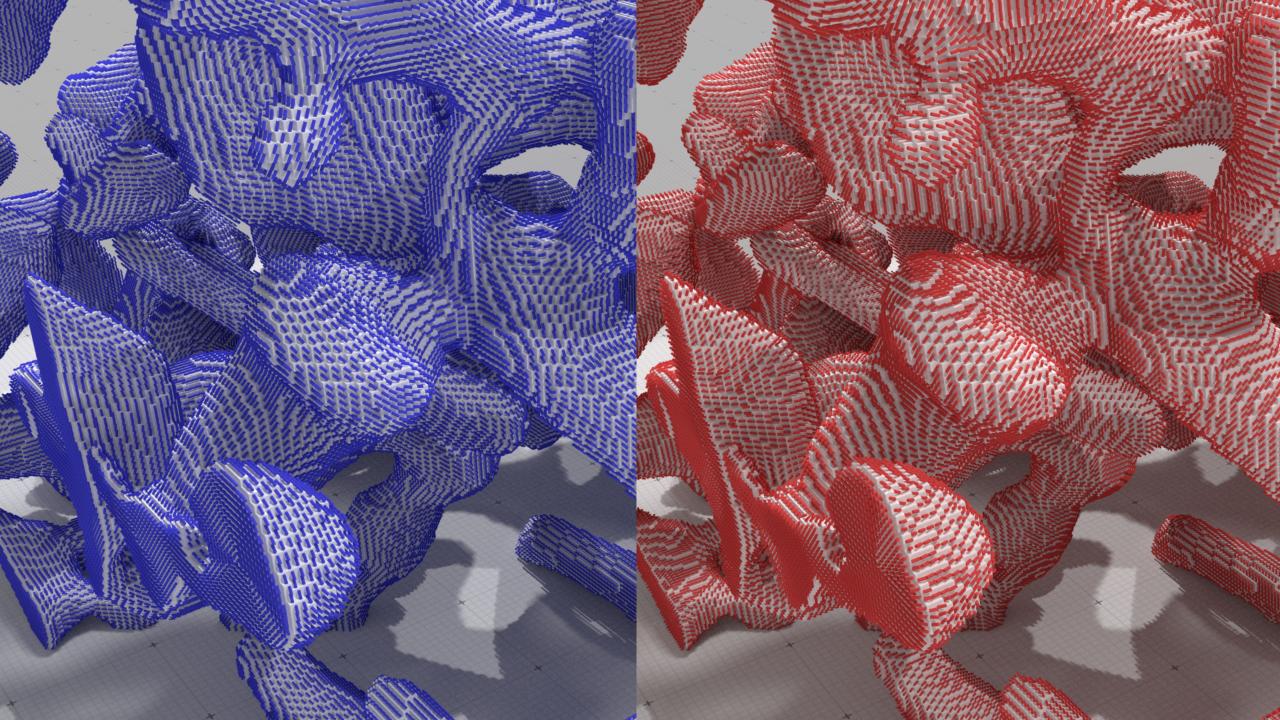
$$\dots \| \hat{\mathbf{n}}(M_h, \xi(x))) - \mathbf{n}(M, x) \|_2 \le C \cdot h^{\frac{2}{3}}$$











 $\mathscr{E}(\hat{P}) := \alpha \sum_{i=1}^{n} \|\mathbf{p}_i - \hat{\mathbf{p}}_i\|^2 + \beta \sum_{f \in F} \sum_{\hat{\mathbf{e}}_j \in \partial f} (\hat{\mathbf{e}}_j \cdot \mathbf{n}_f)^2 + \gamma \sum_{i=1}^{n} \|\hat{\mathbf{p}}_i - \hat{\mathbf{b}}_i\|^2$

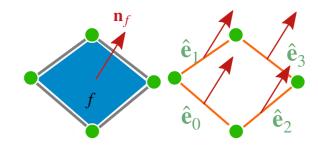
$$\mathcal{E}(\hat{P}) := \alpha \sum_{i=1}^{n} ||\mathbf{p}_i - \hat{\mathbf{p}}_i||^2 + \beta \sum_{f \in F} \sum_{\hat{\mathbf{e}}_j \in \partial f} (\hat{\mathbf{e}}_j \cdot \mathbf{n}_f)^2 + \gamma \sum_{i=1}^{n} ||\hat{\mathbf{p}}_i - \hat{\mathbf{b}}_i||^2$$

Data attachment term: points stay close to the original surface

$$\mathcal{E}(\hat{P}) := \alpha \sum_{i=1}^{n} \|\mathbf{p}_i - \hat{\mathbf{p}}_i\|^2 + \beta \sum_{f \in F} \sum_{\hat{\mathbf{e}}_j \in \partial f} (\hat{\mathbf{e}}_j \cdot \mathbf{n}_f)^2 + \gamma \sum_{i=1}^{n} \|\hat{\mathbf{p}}_i - \hat{\mathbf{b}}_i\|^2$$

Data attachment term: points stay close to the original surface

Alignment term: forces the quads to be perpendicular to the normal vector field

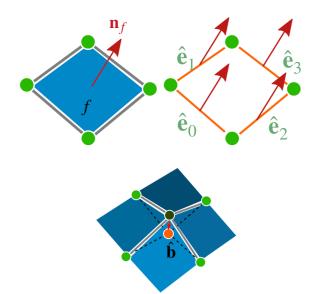


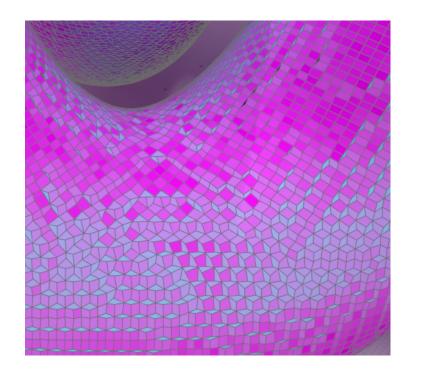
$$\mathcal{E}(\hat{P}) := \alpha \sum_{i=1}^{n} \|\mathbf{p}_i - \hat{\mathbf{p}}_i\|^2 + \beta \sum_{f \in F} \sum_{\hat{\mathbf{e}}_j \in \partial f} (\hat{\mathbf{e}}_j \cdot \mathbf{n}_f)^2 + \gamma \sum_{i=1}^{n} \|\hat{\mathbf{p}}_i - \hat{\mathbf{b}}_i\|^2$$

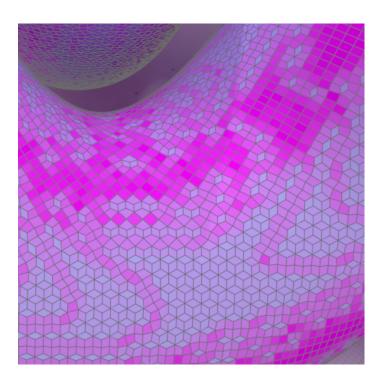
Data attachment term: points stay close to the original surface

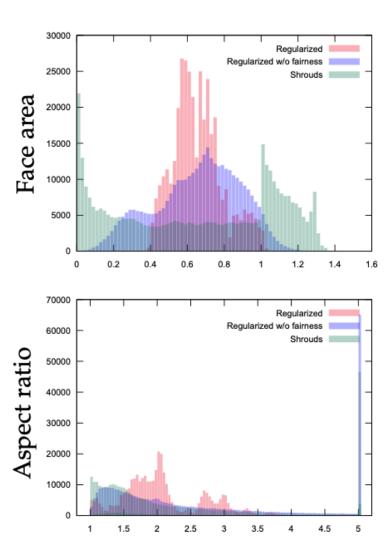
Alignment term: forces the quads to be perpendicular to the normal vector field

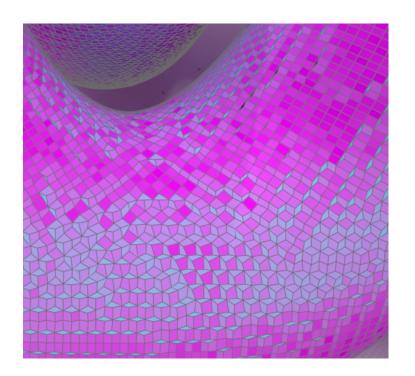
Fairness term: forces the points to be close to their neighbors barycenter



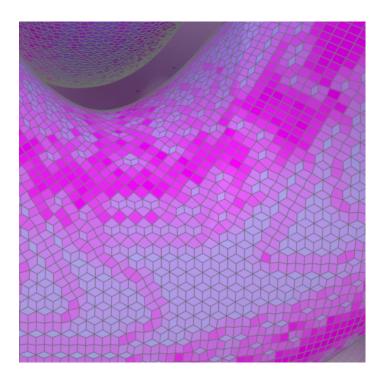




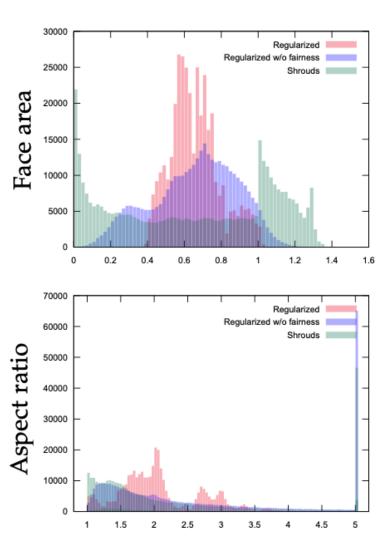




without fairness term



with fairness term



DISCRETIZATION & MINIMIZATION

 $P^* = \underset{\hat{P}}{\operatorname{argmin}} \ \mathscr{E}(\hat{P})$

Convex energy with explicit gradients:

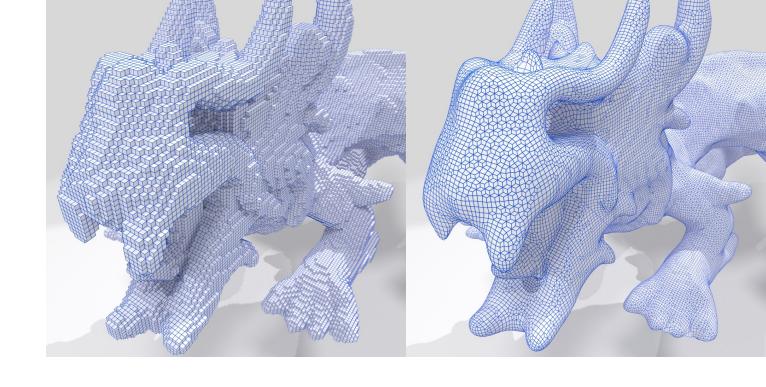
$$\frac{\partial \mathcal{E}(\hat{P})}{\partial \hat{\mathbf{p}}_i} := \alpha \sum_{i=1}^n 2(\hat{\mathbf{p}}_i - \mathbf{p}_i) + \beta \sum_{f \in F} \sum_{\hat{\mathbf{e}}_i \in \partial F} 2(\hat{\mathbf{e}}_j \cdot \mathbf{n}_f) \mathbf{n}_f + \gamma \sum_{i=1}^n 2(\hat{\mathbf{b}}_i - \hat{\mathbf{p}}_i)$$

⇒ Gradient as a sparse (positive-definite) matrix (linear operator in the vertices position)

Efficient linear solvers to obtain optimal positions P^* : $\nabla \mathscr{E}(P^*) = 0 \Leftrightarrow Ax = b$

TIMINGS

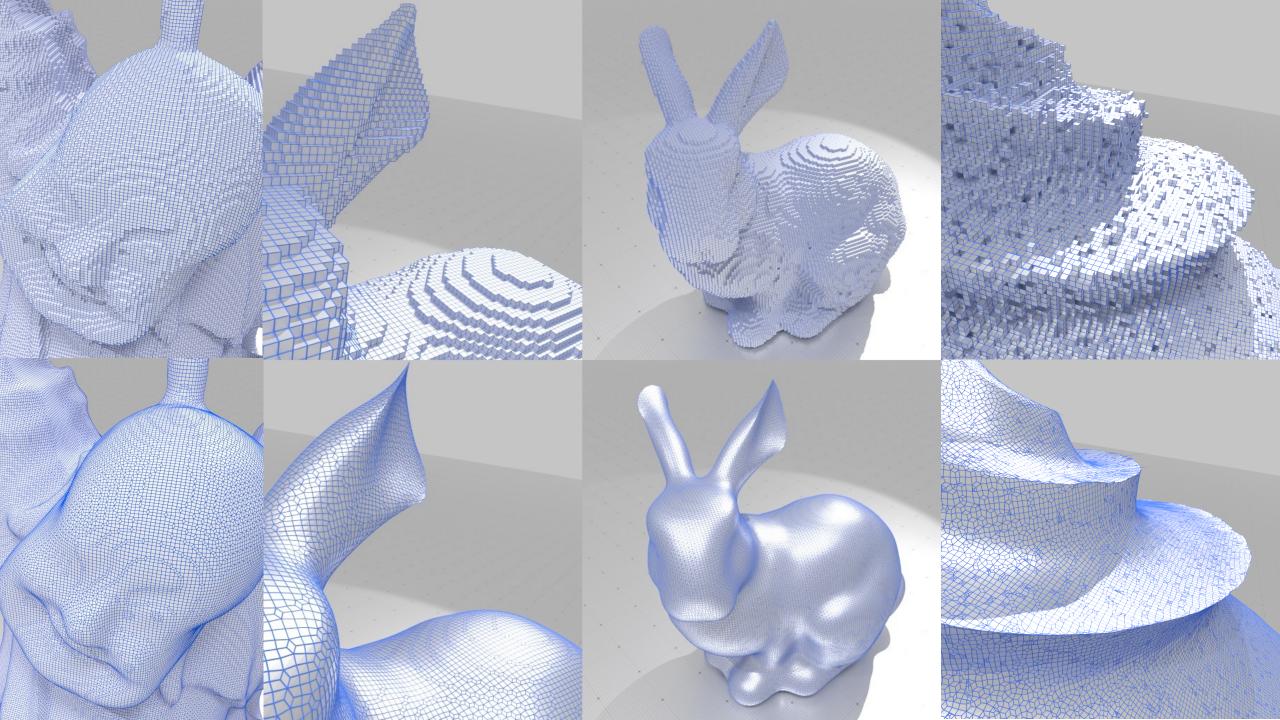
Dragon 256³, 104 916 quads.



Linear operator construction (4.7s, CPU) and iterative gradient descent on GPU (OpenCL / OpenGL)

3ms per step, ~20 steps for acceptable visual quality,

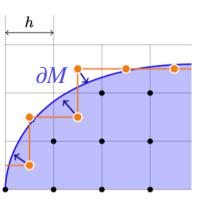
1.5s for full convergence

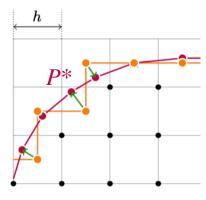


STABILITY RESULTS

$$\frac{1}{n}\sum_{i=1}^n \|\mathbf{p}_i^* - \mathbf{p}_i\| \le C \cdot h$$

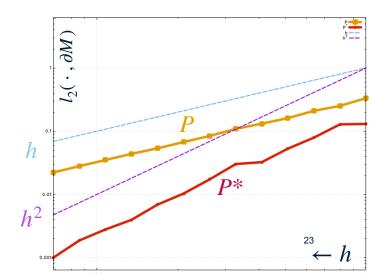
$$\frac{1}{n} \sum_{i=1}^{n} d(\mathbf{p}_{i}^{*}, \partial M) \le C' \cdot h$$





If $\{\mathbf{n}_f\}$ are estimated using a multigrid convergent or a piecewise smooth estimator:

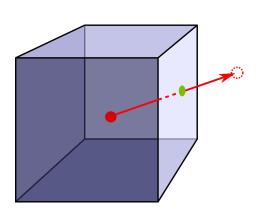
- $\Rightarrow P^*$ is a better approximation of ∂M than P
- ⇒ regularized quad *normal vectors* are multigrid convergent

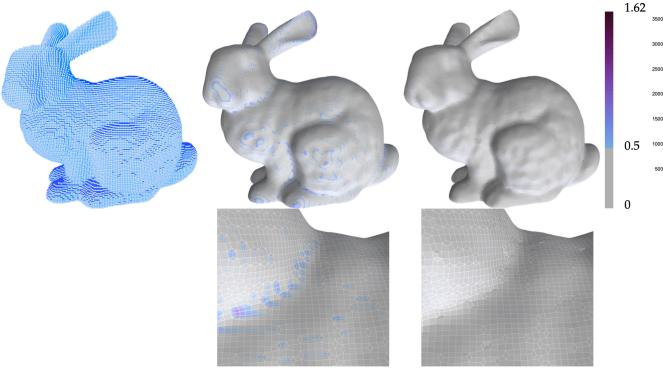


TOPOLOGICAL CONTROL

If all points of a face lies in the convex hull of the face vertices, and if each vertex \mathbf{p}^* stays in its $(h - \epsilon)$ -cube, the P^* is self-intersection free.

Subspace minimisation as in [HP07] or subgradient scheme with clamping



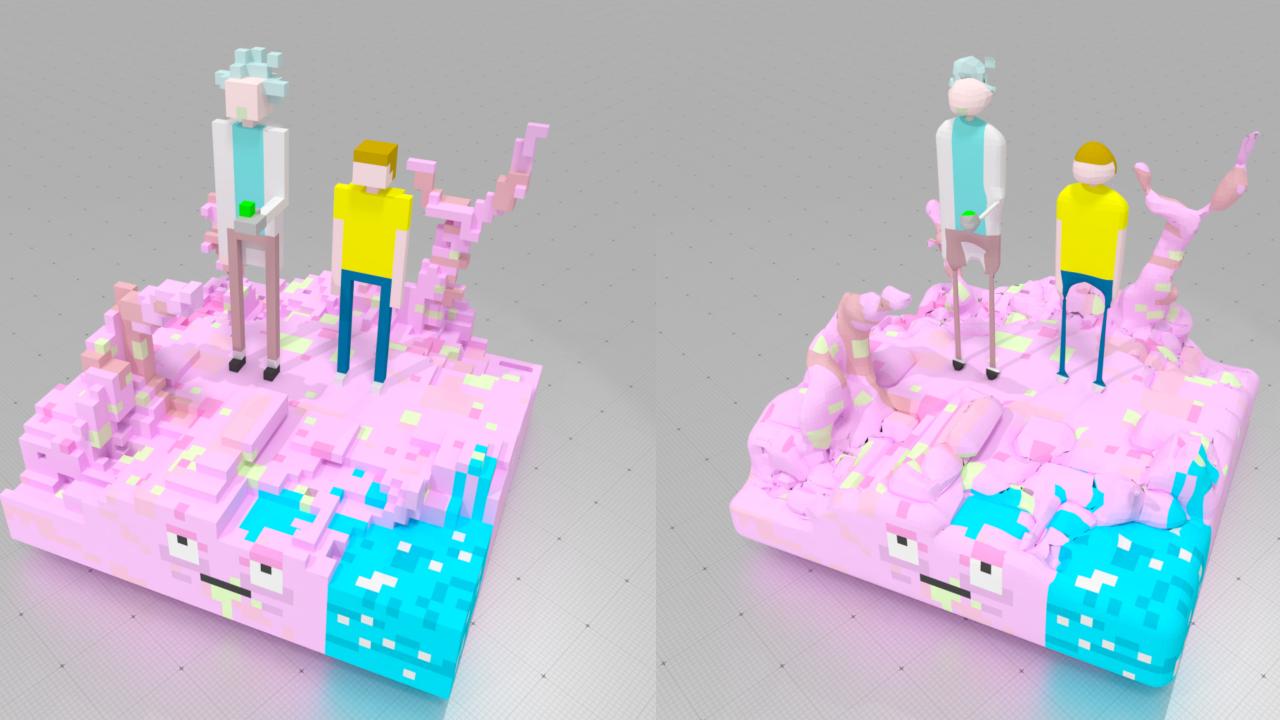


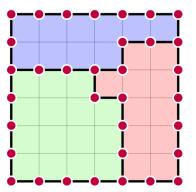
David Coeurjolly - Digital surface regularization witl

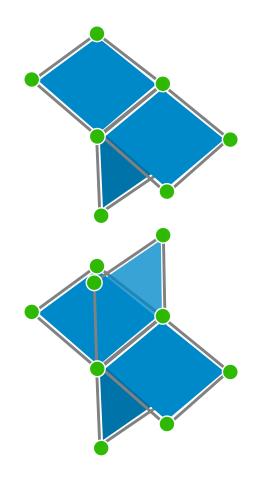
Without (ii)

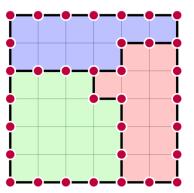
With (ii)

EXTENSIONS



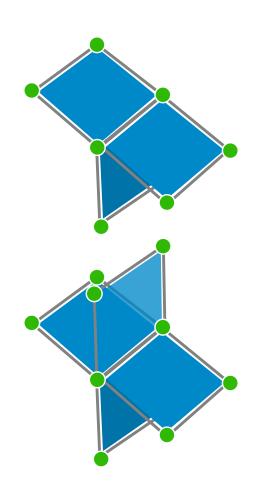


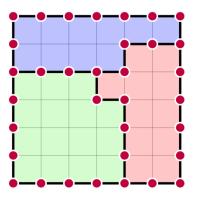




Energy function and gradient operator stay the same!

Data attachment term



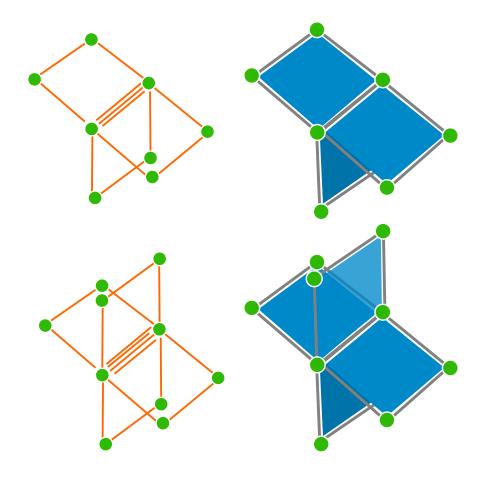


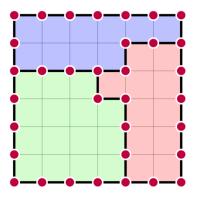
Energy function and gradient operator stay the same!

Data attachment term

Alignment term

thanks to the *quad-to-edge* principle



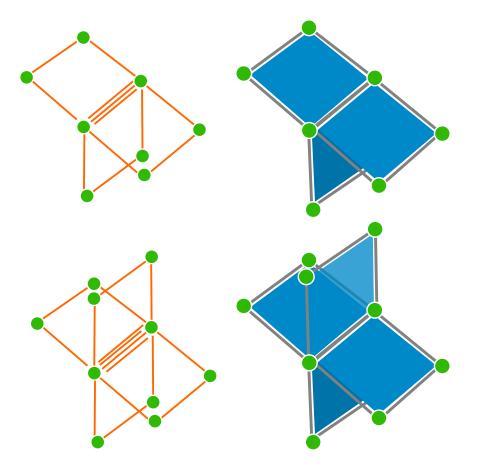


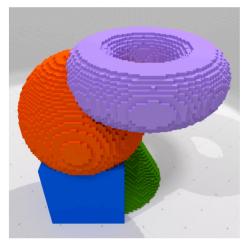
Energy function and gradient operator stay the same!

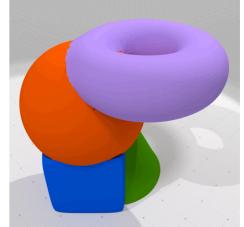
Data attachment term

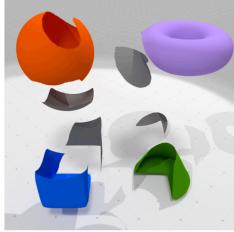
Alignment term thanks to the *quad-to-edge* principle

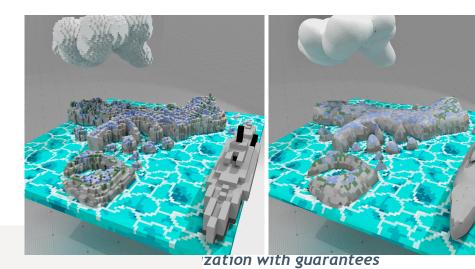
Fairness term : it allows 1-D junction regularization

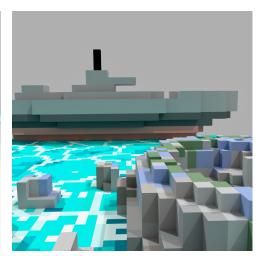








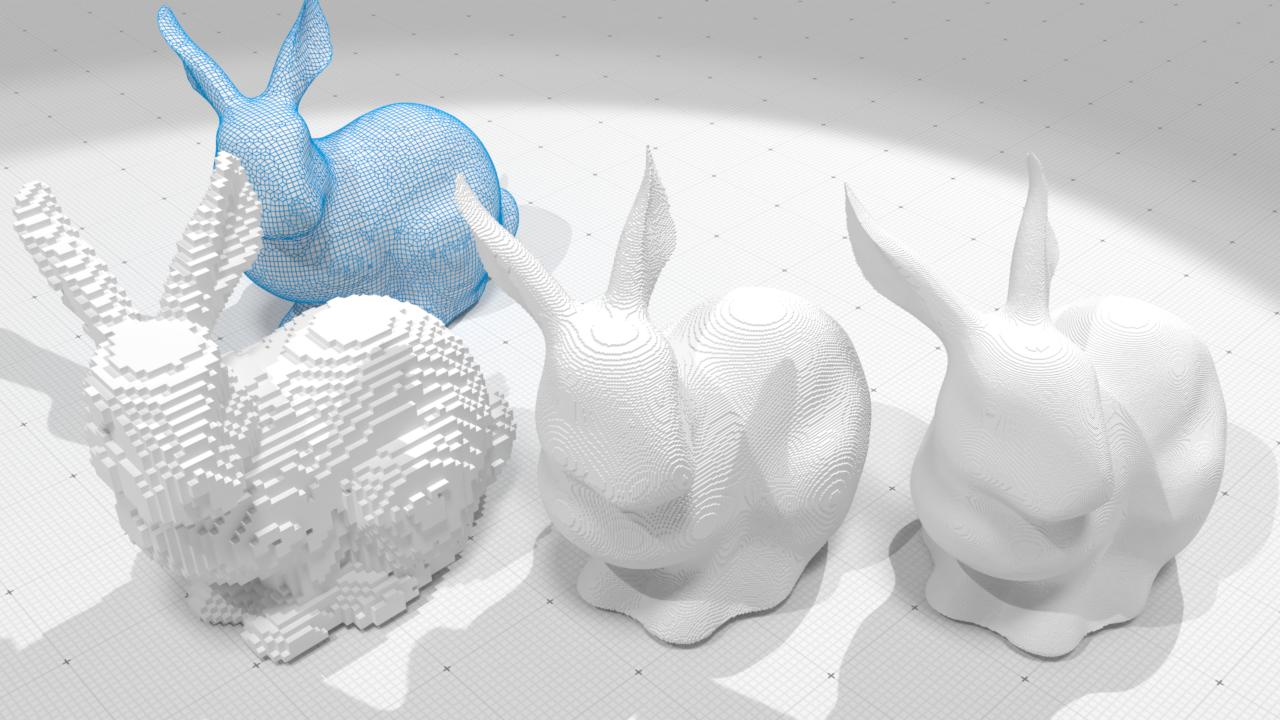




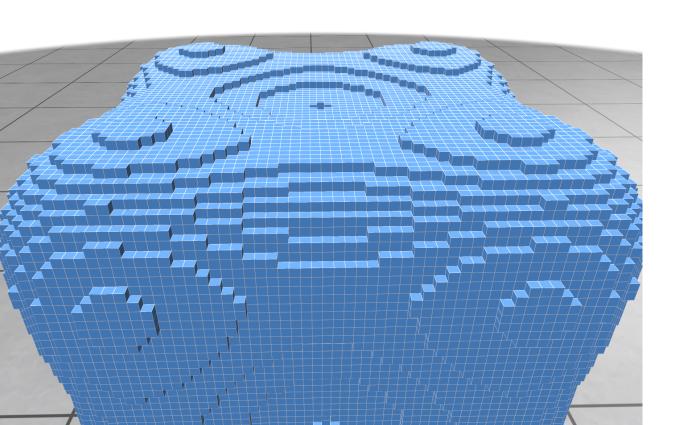
VOXEL UPSCALING

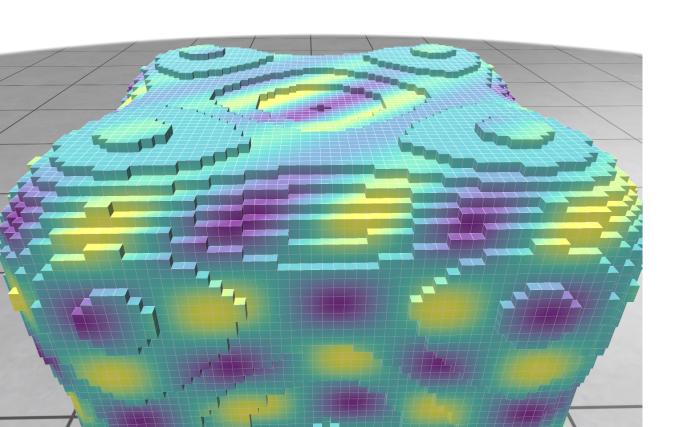
Compute the regularized surface at low voxel resolution

Voxelize the regularized surface at higher resolutions

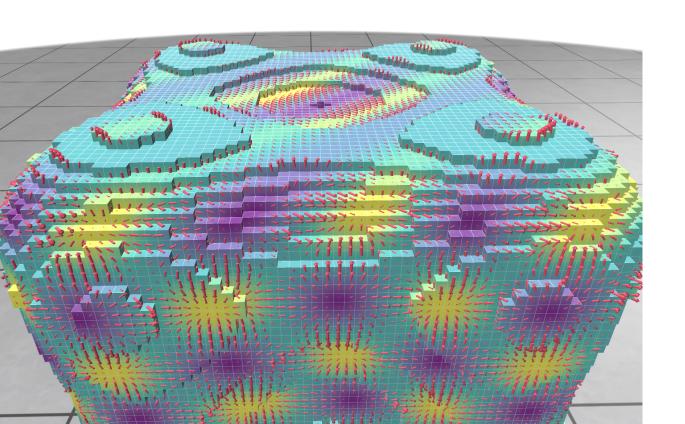


31

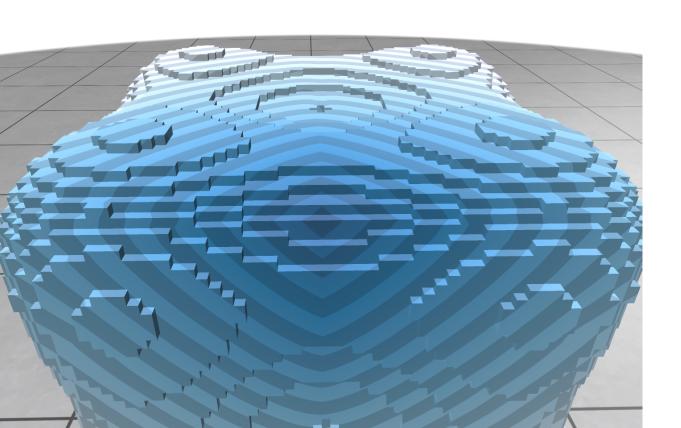




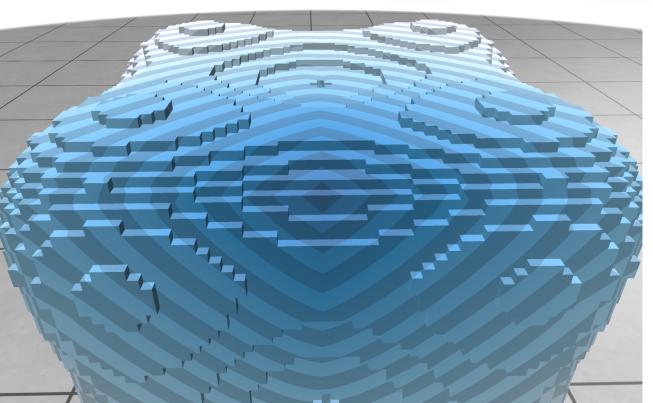
[dGBD20]



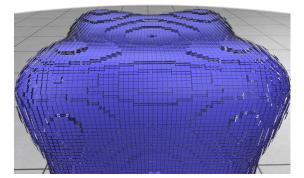
[dGBD20] + [CWW17]

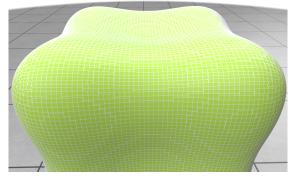


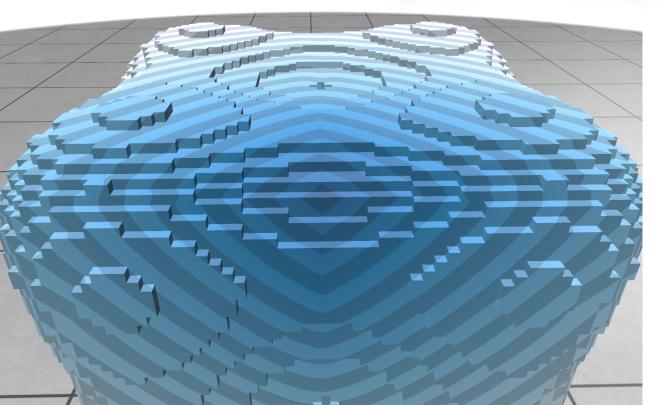
[dGBD20] + [CWW17]



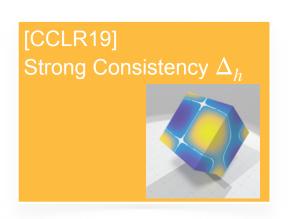
[dGBD20] + [CWW17]

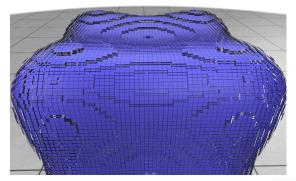


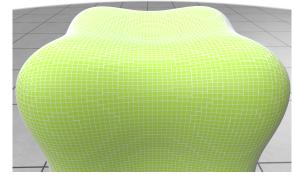


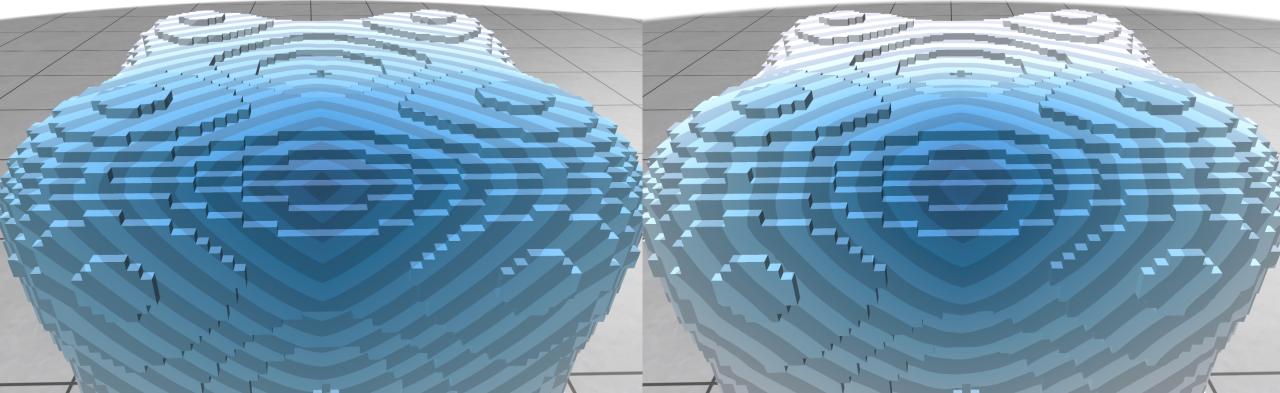


[dGBD20] + [CWW17]









CONCLUSION & FUTURE WORKS

Voxel art regularization tool:

- robust from low to high-res, w/o noise
- easy to implement (convex energy function, GPU solvers)
- one-to-one mapping with input quads
- multi-labeled images
- stability results thanks to digital geometry processing tools

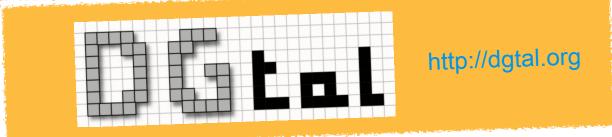
Future works:

Corrected (embedding, tangent bundle) discrete calculus on digital surfaces

CONCLUSION & FUTURE WORKS

Voxel art regularization tool:

- robust from low to high-res, w/o noise
- easy to implement (convex energy function, GPU solvers)
- one-to-one mapping with input quads
- multi-labeled images
- stability result



Future works:

Corrected (embedding, tangent bundle) discrete calculus on digital surfaces