# DIGITAL SURFACE REGULARIZATION WITH GUARANTEES

David Coeurjolly, CNRS, Lyon

Pierre Gueth, Adobe

Jacques-Olivier Lachaud, Univ. Savoie Mont-Blanc













## **OBJECTIVES**

Regularize the surface of a voxel set

with the same combinatorics,



### **OBJECTIVES**

Regularize the surface of a voxel set

with the same combinatorics,

with a voxel attributes mapping,



### **OBJECTIVES**

Regularize the surface of a voxel set

with the same combinatorics,

with a voxel attributes mapping,

on labeled image interfaces











### Iso-contouring approaches [Marching-Cubes (MC), Dual-contouring (DC)...]

local construction of the mesh with fast algorithms (GPU friendly, multi-labeled images, adaptive...). Great for implicit functions / SDF

- sensitive to noise
- [DC] requires high quality Hermite data (position and normal vector)









### Iso-contouring approaches [Marching-Cubes (MC), Dual-contouring (DC)...]

local construction of the mesh with fast algorithms (GPU friendly, multi-labeled images, adaptive...). Great for implicit functions / SDF

- sensitive to noise
- [DC] requires high quality Hermite data (position and normal vector)

### Surface denoising [HS13, WYL\* 14, WZCF15, ZWZD15, ZDZ\*15]

extract an iso-surface and apply feature preserving denoising

- remeshing may lose the mapping with the original voxel data
- sensitive to noise or low resolution voxel shapes







### Iso-contouring approaches [Marching-Cubes (MC), Dual-contouring (DC)...]

local construction of the mesh with fast algorithms (GPU friendly, multi-labeled images, adaptive...). Great for implicit functions / SDF

- sensitive to noise
- [DC] requires high quality Hermite data (position and normal vector)

### Surface denoising [HS13, WYL\* 14, WZCF15, ZWZD15, ZDZ\*15]

extract an iso-surface and apply feature preserving denoising

- remeshing may lose the mapping with the original voxel data
- sensitive to noise or low resolution voxel shapes

### Volumetric reconstruction [LS07, DVS\* 09, BYB09, BLW13, FTB16, AJR\*17]

variational formulation to optimize the geometry of tetrahedra while preserving interfaces

unon smooth interfaces for low resolution voxel shapes







# **CONTRIBUTIONS**





# **Digital surface regularization:**

- robust from low to high-res, w/o noise
- easy to implement (convex energy function, GPU solvers)
- one-to-one mapping with input quads
- multi-labeled images
- stability results thanks to multigrid convergence











# **GEOMETRY PROCESSING ON DIGITAL DATA**



### **GEOMETRY PROCESSING ON DIGITAL DATA**



For any compact domain  $M \in \mathbb{R}^d$  such that  $\partial M$  has positive reach, and its digitization  $M_h$  on a grid with grid-step h, then  $d_H(\partial M, \partial M_h) \leq \sqrt{d/2}h$  and the canonical projection map is one-to-one almost everywhere as h tends to zero.

# **VARIATIONAL FORMULATION**





 $\mathscr{E}(\hat{P}) := \alpha \sum_{i=1}^{n} \|\mathbf{p}_i - \hat{\mathbf{p}}_i\|^2 + \beta \sum_{f \in F} \sum_{\hat{\mathbf{e}}_i \in \partial f} (\hat{\mathbf{e}}_j \cdot \mathbf{n}_f)^2 + \gamma \sum_{i=1}^{n} \|\hat{\mathbf{p}}_i - \hat{\mathbf{b}}_i\|^2$ 

$$\mathscr{E}(\hat{P}) := \alpha \sum_{i=1}^{n} ||\mathbf{p}_i - \hat{\mathbf{p}}_i||^2 + \beta \sum_{f \in F} \sum_{\hat{\mathbf{e}}_j \in \partial f} (\hat{\mathbf{e}}_j \cdot \mathbf{n}_f)^2 + \gamma \sum_{i=1}^{n} ||\hat{\mathbf{p}}_i - \hat{\mathbf{b}}_i||^2$$

Data attachment term: points stay close to the original surface

$$\mathcal{E}(\hat{P}) := \alpha \sum_{i=1}^{n} \|\mathbf{p}_i - \hat{\mathbf{p}}_i\|^2 + \beta \sum_{f \in F} \sum_{\hat{\mathbf{e}}_j \in \partial f} (\hat{\mathbf{e}}_j \cdot \mathbf{n}_f)^2 + \gamma \sum_{i=1}^{n} \|\hat{\mathbf{p}}_i - \hat{\mathbf{b}}_i\|^2$$

Data attachment term: points stay close to the original surface

Alignment term: forces the quads to be perpendicular to the normal vector field



### Normal vector per quad:

- Multigrid convergent estimation [CLL14]
- w/o feature preserving piecewise smooth reconstructions [BM12, CFGL16]





[CLL14] [LCL17] [LRTC20]



```
Let M be a convex shape in \mathbb{R}^2 with a C^3 bounded positive curvature boundary.  \forall \mathbf{x} \in \partial M, \forall \mathbf{x} \hat{\ } \in \partial [\mathbb{G}_h(M)]_h, \|\hat{x} - x\|_\infty \leq h \Rightarrow \\ |\kappa^R(\mathbb{G}_h(M), \mathbf{x}, h) - \kappa(M, \mathbf{x})| = O(R) \\ + O\left(\frac{h^\beta}{R^{1+\beta}}\right) \\ + O\left(\frac{h^{\alpha'}}{R^2}\right) + O\left(h^{\alpha'}\right) + O\left(\frac{h^{2\alpha'}}{R^2}\right)
```



[CLL14] [LCL17] [LRTC20]



Let 
$$M$$
 be a convex shape in  $\mathbb{R}^2$  with a  $C^3$  bounded positive curvature boundary. 
$$\forall \mathbf{x} \in \partial M, \forall \mathbf{x} \hat{=} \partial [\mathbf{G}_h(M)]_h, \|\hat{x} - x\|_\infty \leq h \Rightarrow \\ |\kappa^R(\mathbf{G}_h(M), \mathbf{x}, h) - \kappa(M, \mathbf{x})| = O(R) \\ + O\left(\frac{h^\beta}{R^{1+\beta}}\right) \\ + O\left(\frac{h^{\alpha'}}{R^2}\right) + O\left(h^{\alpha'}\right) + O\left(\frac{h^{2\alpha'}}{R^2}\right)$$

$$\dots \| \hat{\mathbf{n}}(M_h, \xi(x))) - \mathbf{n}(M, x) \|_2 \le C \cdot h^{\frac{2}{3}}$$



[CLL14] [LCL17] [LRTC20]



Let 
$$M$$
 be a convex shape in  $\mathbb{R}^2$  with a  $C^3$  bounded positive curvature boundary. 
$$\forall \mathbf{x} \in \partial M, \forall \mathbf{x} \hat{\ } \in \partial [\mathrm{G}_h(M)]_h, \|\mathbf{x} \hat{\ } - \mathbf{x}\|_\infty \leq h \Rightarrow \\ |\mathbf{x}^R(\mathrm{G}_h(M), \mathbf{x}, h) - \kappa(M, \mathbf{x})| = O(R) \\ + O\left(\frac{h^{\alpha}}{R^{1+\beta}}\right) \\ + O\left(\frac{h^{\alpha'}}{R^2}\right) + O\left(h^{\alpha'}\right) + O\left(\frac{h^{2\alpha'}}{R^2}\right)$$

$$\dots \| \hat{\mathbf{n}}(M_h, \xi(x))) - \mathbf{n}(M, x) \|_2 \le C \cdot h^{\frac{2}{3}}$$











 $\mathscr{E}(\hat{P}) := \alpha \sum_{i=1}^{n} \|\mathbf{p}_i - \hat{\mathbf{p}}_i\|^2 + \beta \sum_{f \in F} \sum_{\hat{\mathbf{e}}_j \in \partial f} (\hat{\mathbf{e}}_j \cdot \mathbf{n}_f)^2 + \gamma \sum_{i=1}^{n} \|\hat{\mathbf{p}}_i - \hat{\mathbf{b}}_i\|^2$ 

$$\mathcal{E}(\hat{P}) := \alpha \sum_{i=1}^{n} ||\mathbf{p}_i - \hat{\mathbf{p}}_i||^2 + \beta \sum_{f \in F} \sum_{\hat{\mathbf{e}}_j \in \partial f} (\hat{\mathbf{e}}_j \cdot \mathbf{n}_f)^2 + \gamma \sum_{i=1}^{n} ||\hat{\mathbf{p}}_i - \hat{\mathbf{b}}_i||^2$$

Data attachment term: points stay close to the original surface

$$\mathcal{E}(\hat{P}) := \alpha \sum_{i=1}^{n} \|\mathbf{p}_i - \hat{\mathbf{p}}_i\|^2 + \beta \sum_{f \in F} \sum_{\hat{\mathbf{e}}_j \in \partial f} (\hat{\mathbf{e}}_j \cdot \mathbf{n}_f)^2 + \gamma \sum_{i=1}^{n} \|\hat{\mathbf{p}}_i - \hat{\mathbf{b}}_i\|^2$$

Data attachment term: points stay close to the original surface

Alignment term: forces the quads to be perpendicular to the normal vector field



$$\mathcal{E}(\hat{P}) := \alpha \sum_{i=1}^{n} \|\mathbf{p}_i - \hat{\mathbf{p}}_i\|^2 + \beta \sum_{f \in F} \sum_{\hat{\mathbf{e}}_j \in \partial f} (\hat{\mathbf{e}}_j \cdot \mathbf{n}_f)^2 + \gamma \sum_{i=1}^{n} \|\hat{\mathbf{p}}_i - \hat{\mathbf{b}}_i\|^2$$

Data attachment term: points stay close to the original surface

Alignment term: forces the quads to be perpendicular to the normal vector field

Fairness term: forces the points to be close to their neighbors barycenter











without fairness term



with fairness term



### **DISCRETIZATION & MINIMIZATION**

 $P^* = \underset{\hat{P}}{\operatorname{argmin}} \ \mathscr{E}(\hat{P})$ 

Convex energy with explicit gradients:

$$\frac{\partial \mathcal{E}(\hat{P})}{\partial \hat{\mathbf{p}}_i} := \alpha \sum_{i=1}^n 2(\hat{\mathbf{p}}_i - \mathbf{p}_i) + \beta \sum_{f \in F} \sum_{\hat{\mathbf{e}}_i \in \partial F} 2(\hat{\mathbf{e}}_j \cdot \mathbf{n}_f) \mathbf{n}_f + \gamma \sum_{i=1}^n 2(\hat{\mathbf{b}}_i - \hat{\mathbf{p}}_i)$$

⇒ Gradient as a sparse (positive-definite) matrix (linear operator in the vertices position)

Efficient linear solvers to obtain optimal positions  $P^*$ :  $\nabla \mathscr{E}(P^*) = 0 \Leftrightarrow Ax = b$ 

### **TIMINGS**

Dragon 256<sup>3</sup>, 104 916 quads.



Linear operator construction (4.7s, CPU) and iterative gradient descent on GPU (OpenCL / OpenGL)

3ms per step, ~20 steps for acceptable visual quality,

1.5s for full convergence



#### **STABILITY RESULTS**



$$\frac{1}{n}\sum_{i=1}^n \|\mathbf{p}_i^* - \mathbf{p}_i\| \le C \cdot h$$

$$\frac{1}{n} \sum_{i=1}^{n} d(\mathbf{p}_{i}^{*}, \partial M) \le C' \cdot h$$





If  $\{\mathbf{n}_f\}$  are estimated using a multigrid convergent or a piecewise smooth estimator:

- $\Rightarrow P^*$  is a better approximation of  $\partial M$  than P
- ⇒ regularized quad *normal vectors* are multigrid convergent



#### **TOPOLOGICAL CONTROL**

If all points of a face lies in the convex hull of the face vertices, and if each vertex  $\mathbf{p}^*$  stays in its  $(h - \epsilon)$ -cube, the  $P^*$  is self-intersection free.

Subspace minimisation as in [HP07] or subgradient scheme with clamping





David Coeurjolly - Digital surface regularization witl

Without (ii)

With (ii)

# **EXTENSIONS**









**Energy function and gradient operator stay the same!** 

Data attachment term







**Energy function and gradient operator stay the same!** 

Data attachment term



Alignment term



thanks to the *quad-to-edge* principle





#### Energy function and gradient operator stay the same!

Data attachment term



Alignment term thanks to the *quad-to-edge* principle

Fairness term : it allows 1-D junction regularization

















### **VOXEL UPSCALING**

Compute the regularized surface at low voxel resolution

Voxelize the regularized surface at higher resolutions



31





[dGBD20]



[dGBD20] + [CWW17]



[dGBD20] + [CWW17]





[dGBD20] + [CWW17]









[dGBD20] + [CWW17]









#### **CONCLUSION & FUTURE WORKS**

#### **Voxel art regularization tool:**

- robust from low to high-res, w/o noise
- easy to implement (convex energy function, GPU solvers)
- one-to-one mapping with input quads
- multi-labeled images
- stability results thanks to digital geometry processing tools

#### **Future works:**

Corrected (embedding, tangent bundle) discrete calculus on digital surfaces

#### **CONCLUSION & FUTURE WORKS**

#### **Voxel art regularization tool:**

- robust from low to high-res, w/o noise
- easy to implement (convex energy function, GPU solvers)
- one-to-one mapping with input quads
- multi-labeled images
- stability result



#### **Future works:**

Corrected (embedding, tangent bundle) discrete calculus on digital surfaces