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OBJECTIVES
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with the same combinatorics,

with a voxel attributes mapping,

on labeled image interfaces
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RELATED WORKS

Iso-contouring approaches [Marching-Cubes (MC), Dual-contouring (DC)…]


local construction of the mesh with fast algorithms (GPU friendly, multi-labeled images, 
adaptive…). Great for implicit functions / SDF


 sensitive to noise 


 [DC] requires high quality Hermite data (position and normal vector)
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Surface denoising [HS13, WYL∗ 14, WZCF15, ZWZD15, ZDZ∗15] 


extract an iso-surface and apply feature preserving denoising


remeshing may lose the mapping with the original voxel data


sensitive to noise or low resolution voxel shapes
[ZDZ*15]
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[MC] [DC]

Surface denoising [HS13, WYL∗ 14, WZCF15, ZWZD15, ZDZ∗15] 


extract an iso-surface and apply feature preserving denoising


remeshing may lose the mapping with the original voxel data


sensitive to noise or low resolution voxel shapes
[ZDZ*15]

Volumetric reconstruction [LS07, DVS∗ 09, BYB09, BLW13, FTB16, AJR∗17] 


variational formulation to optimize the geometry of tetrahedra while preserving interfaces


non smooth interfaces for low resolution voxel shapes

[AJR∗17]
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CONTRIBUTIONS
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Digital surface regularization:


• robust from low to high-res, w/o noise 
• easy to implement (convex energy function, GPU solvers) 
• one-to-one mapping with input quads 
• multi-labeled images

• stability results thanks to multigrid convergence 
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M ∂M (M )) M M(M )]h (M )]h

dH(∂M, ∂Mh) ≤ d /2h
M ∈ ℝd Mh∂MFor any compact domain              such that       has positive reach, and its digitization      on a grid 

with grid-step h, then                                     and the canonical projection map is one-to-one 

almost everywhere as h tends to zero.

[LT16]



VARIATIONAL FORMULATION
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DIGITAL SURFACE REGULARIZATION 
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Data attachment term: points stay close to the original surface
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̂e3̂e1

Alignment term: forces the quads to be perpendicular to the normal vector field
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Normal vector per quad:


• Multigrid convergent estimation [CLL14]


• w/o feature preserving piecewise smooth 
reconstructions [BM12, CFGL16]


NORMAL VECTOR FIELD ESTIMATION
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NORMAL VECTOR FIELD ESTIMATION
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[CLL14] [LCL17] [LRTC20]
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[CLL14]
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ℰ( ̂P) := α
n

∑
i=1

∥pi − p̂i∥2 + β∑
f∈F

∑̂
ej∈∂f

( ̂ej ⋅ nf )2 + γ
n

∑
i=1

∥p̂i − b̂i∥2

Data attachment term: points stay close to the original surface

Fairness term:  forces the points to be close to their neighbors barycenter

̂e0 ̂e2

̂e3̂e1

Alignment term: forces the quads to be perpendicular to the normal vector field
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DISCRETIZATION & MINIMIZATION
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∂ℰ( ̂P)
∂p̂i

:= α
n

∑
i=1

2(p̂i − pi) + β∑
f∈F

∑̂
ej∈∂F

2( ̂ej ⋅ nf )nf + γ
n

∑
i=1

2(b̂i − p̂i)

Convex energy with explicit gradients:

Gradient as a sparse (positive-definite) matrix (linear operator in the vertices position)⇒

Efficient linear solvers to obtain optimal positions      : P* ∇ℰ(P*) = 0 ⇔ Ax = b

P* = argmin
̂P

ℰ( ̂P)
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TIMINGS
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Linear operator construction (4.7s, CPU) and iterative gradient descent on GPU (OpenCL / OpenGL)

3ms per step,  ~20 steps for acceptable visual quality, 


1.5s for full convergence 

Dragon 2563, 104 916 quads. 
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STABILITY RESULTS

1
n

n

∑
i=1

∥p*i − pi∥ ≤ C ⋅ h 1
n

n

∑
i=1

d(p*i , ∂M ) ≤ C′￼⋅ h

If      is smooth (positive reach),                                and for all normal vector fieldsM

If         are estimated using a multigrid convergent or a piecewise smooth estimator:{nf}

      is a better approximation of        than ⇒ P* ∂M
regularized quad normal vectors are multigrid convergent⇒

Mh := M ∩ (h ⋅ ℤ3) {nf}

P

∂M

P*

P

P*

← h

l 2(
⋅,

∂M
)

h

h2
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TOPOLOGICAL CONTROL
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If all points of a face lies in the convex hull of the face vertices, and if each vertex  stays in its 
( )-cube, the  is self-intersection free.   

p*
h − ϵ P*

Subspace minimisation as in [HP07]

or subgradient scheme with clamping 



EXTENSIONS 
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MULTI-LABELED IMAGES

27

Energy function and gradient operator stay the same !

Data attachment term 

Fairness term            it allows 1-D junction regularization  

Alignment term            thanks to the quad-to-edge principle
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MULTI-LABELED IMAGES
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[AJR∗17]
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VOXEL UPSCALING
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Compute the regularized surface at low voxel resolution


Voxelize the regularized surface at higher resolutions
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[dGBD20]

∇, ∇ ⋅ , ∇ × , ♯, ♭ , Δ . . .
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CONCLUSION & FUTURE WORKS

32

Voxel art regularization tool: 

• robust from low to high-res, w/o noise 
• easy to implement (convex energy function, GPU solvers) 
• one-to-one mapping with input quads 
• multi-labeled images

• stability results thanks to digital geometry processing tools 

Future works:

• Corrected (embedding, tangent bundle) discrete calculus on digital surfaces
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http://dgtal.org



