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Summary

Generalized conditional gradient methods (GCG) for inverse
problems in the space of measures

Dynamic inverse problems with Optimal Transport regularization

Dynamic generalized conditional gradient method (DGCG)

Numerical simulations
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Inverse problems in the space of measures

The total variation case (BLASSO)
We aim at solving the following inverse problem in the space of measures:

min
µ∈M(Ω)

1

2
‖Aµ− y‖2

Y + α‖µ‖M

M(Ω) is the space of measures in Ω (bounded, open, convex set)

Y is the Hilbert space of observations

A :M(Ω)→ Y is a linear continuous observation operator (Fourier
measurements)

‖ · ‖M is the total variation norm.

Resolution of BLASSO is challenging due to the infinite dimensionality
and non-reflexivity of the space of measure.
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Two main approaches to the problem:

Grid-based algorithms
The domain is discretized. As a result the problem becomes finite
dimensional (LASSO) and not difficult to solve by standard
methods, e.g. proximal forward-backward splitting, IST.

Drawbacks:

Resolution is limited by the size of the grid.
The inverse problem becomes more ill-conditioned.
Difficult to reconstruct spikes precisely.

Grid-free algorithms
Optimization is performed in the space of measures directly by so
called Generalized Conditional Gradient Methods.
Inverse problems in the space of measures Bredies, K., Pikkaranien, H. K.,
ESAIM: COCV, 2013

The Alternating Descent Conditional Gradient Method for Sparse Inverse
Problems Boyd, N., Schiebinger, G., Recht, B. SIAM Journal on Optimization,
2017
The Sliding Frank-Wolfe Algorithm and its Application to Super-Resolution
Microscopy Denoyelle, Q., Duval, V., Peyré, G. and Soubies, E. Inverse
Problems, 2018
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Generalized conditional gradient methods (GCG)

Generalized conditional gradient methods (GCG) are infinite dimensional
generalizations of classical Frank-Wolfe type algorithms.

Idea of the Generalized conditional gradient algorithm

We want to construct a sparse iterate

µn =
∑
i

cni δxn
i

where cni ∈ R and xni ∈ Ω that is converging to a solution of
BLASSO.
The next iterate µn+1 is obtained by adding to µn a new dirac delta
δx̂ for a suitable x̂ ∈ Ω and suitable coefficients.
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The new spike δx̂ is chosen to solve the following partially linearized
BLASSO:

min
µ∈M(Ω)

〈µ,A∗(Aµn − y)〉+ α‖µ‖M

where wn := A∗(Aµn − y) is usually called the dual variable at step
n of the algorithm.

Solutions of the partially linearized problem are dirac deltas.

Lemma (Key lemma)

A solution of
min

µ∈M(Ω)
〈µ,wn〉+ α‖µ‖M

is given by cδx̂ for c ∈ R and x̂ ∈ Ω such that |wn(x̂)| = maxx∈Ω |wn(x)|

The n + 1 iterate is obtained as

µn+1 =
∑
i

cni δxn
i

+ cδx̂ (1)

Then the coefficients cni are optimized with respect to BLASSO.
The constructed sequence µn+1 weakly* converges to a minimizer of
BLASSO with sublinear rate (Bredies - Pikkaranien)
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Dynamic inverse problems with OT regularization

Motivation: Motion-Aware Tomographic Reconstruction

Reconstruct motion of objects (organs, blood flow) from sub-acquisition
time samples.

Several difficulties:

Motion on sub-acquisition time scales ; artifacts in reconstructions.
Drawbacks: need for unrealistic assumptions (e.g. periodicity in
heart beating). Still limited to low-resolution

Infimal convolution of Total Generalized Variation functionals for dynamic. M. Schloegl, M. Holler, A. Schwarzl, K. Bredies and R.
Stollberger, 2017

Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Errico et al., 2015
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Proposed model: OT regularization for dynamic reconstruction
(Bredies-Fanzon, ’20)

We want to reconstruct a time dependent measure ρt ∈M(Ω) for
t ∈ (0, 1). At each time t we have a linear observation operator

Kt :M(Ω)→ Ht

where Ht are time dependent Hilbert spaces.

Then we solve the following variational inverse problem

1

2

∫ 1

0

‖Ktρt − ft‖2
Ht

dt + OT Regularizer

where ft ∈ Ht is the data.

The goal is to choose a regularizer that penalizes an Optimal Transport
energy acting on the measure ρt at different time instants. In this way
the regularized motion will be as natural as possible.

An optimal transport approach for solving dynamic inverse problems in spaces of
measures. K. Bredies, S. Fanzon, 2020
Dynamic Cell Imaging in PET with Optimal Transport Regularization. Schmitzer, B.,
Schäfers, K.P., Wirth, B., 2019
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Kinetic Formulation of Optimal Transport - Benamou
Brenier Energy

Given a vector field
vt(x) : [0, 1]× Ω→ Rd

we say that the pair (ρt , vt) solves the continuity equation with initial
conditions if {

∂tρt + div(ρtvt) = 0

Initial data ρ0, final data ρ1

(CE-IC)

Theorem (Benamou-Brenier ’00)

min
(ρt ,vt)

solving (CE-IC)

∫ 1

0

∫
Ω

|vt(x)|2 dρt(x) dt = min
T : Ω→Ω
T#ρ0=ρ1

∫
Ω

|T (x)− x |2 dρ0(x)

On the left side we minimize the kinetic energy of a pair (ρt , vt) solving
the continuity equation with initial and final data ρ and ρ1.

The right hand side is the classical Monge formulation of OT.
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Consider the following inverse problem (Bredies-Fanzon, 20)

Gα,β(ρt , vt) =
1

2

∫ 1

0

‖Ktρt − ft‖2
Ht

dt + Jα,β(ρt , vt)

where the regularizer is

Jα,β(ρt , vt) =
α

2

∫ 1

0

∫
Ω

|vt(x)|2 dρt(x)dt︸ ︷︷ ︸
Optimal Transport Regularizer

+β

∫ 1

0

‖ρt‖M(Ω) dt︸ ︷︷ ︸
TV Regularizer

s.t. ∂tρt + div(ρtvt) = 0 (Continuity Equation)

Now consider the substitution ρtvt = mt ∈M(Ω,Rd) for every t. Then
one can rewrite the previous functional in a convex way as:

Jα,β(ρt ,mt) =
α

2

∫ 1

0

∫
Ω

(
|mt(x)|
ρt

)2

dρt(x)dt︸ ︷︷ ︸
Optimal Transport Regularizer

+β

∫ 1

0

‖ρt‖M(Ω) dt︸ ︷︷ ︸
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A dynamic generalized conditional gradient method
(DGCG)

We aim at solving the inverse problem with OT regularizer

min
(ρt ,mt)

1

2

∫ 1

0

‖Ktρt − ft‖2
Ht

dt + Jα,β(ρt ,mt)

using a similar approach to the generalized conditional gradient method
for static measures.

How can we generalize the algorithm for BLASSO to this dynamic case?

Which type of sparse iterates should we consider? In other words, which
is the dynamic counterpart of the dirac deltas?

Given a measure µn = (ρnt ,m
n
t ) we should look at solutions of the

partially linearized problem, namely

min
(ρt ,mt)

∫ 1

0

〈ρt ,wn
t 〉M(Ω),C(Ω) dt + Jα,β(ρt ,mt)

where the dual variable wn
t is defined as wt = Kt(K

∗
t ρ

n
t − ft) for every t.
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Lemma (Bredies, C., Fanzon, Romero)

There exists a solution of the partially linearized problem

min
(ρt ,mt)

∫ 1

0

〈ρt ,wn
t 〉M(Ω),C(Ω) dt + Jα,β(ρt ,mt)

given by c(ρ̂t , m̂t) for (ρ̂t , m̂t) ∈ Ext({(ρt ,mt) : Jα,β(ρt ,mt) ≤ 1})

Therefore the sparse iterate of the algorithm will be constructed by linear
combination of extremal points of the set {(ρt ,mt) : Jα,β(ρt ,mt) ≤ 1}

Ext(A) denotes the set of its extremal points of A: u ∈ A such that

u = λu1 + (1− λ)u2 for λ ∈ (0, 1) ⇒ u = u1 = u2
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Characterization of the extremal points of Jα,β

To devise a generalized conditional gradient method (DGCG) for solving
the described dynamic inverse problem. It is necessary to characterize the
extremal points of the unit ball of Jα,β(ρt ,mt).

Theorem (Bredies, C. , Fanzon, Romero)

Let C := {(ρt ,mt) : Jα,β(ρt ,mt) ≤ 1}. Then

Ext(C ) = (0, 0) ∪ C

where

C :=
{
C (γ, α, β) (dt ⊗ δγ(t), γ̇(t)dt ⊗ δγ(t)) : γ ∈ AC2([0, 1]; Ω)

}
where C (γ, α, β) =

(
α + β

∫ 1

0
|γ̇(t)|2 dt

)−1

.

Extremal points of the Benamou-Brenier energy are pairs of measures
concentrated on absolutely continuous curves in Ω.

On the extremal points of the Benamou-Brenier energy. K. Bredies, M. Carioni, S.
Fanzon, F. Romero, 2019

Marcello Carioni 31th March 2021



Characterization of the extremal points of Jα,β

To devise a generalized conditional gradient method (DGCG) for solving
the described dynamic inverse problem. It is necessary to characterize the
extremal points of the unit ball of Jα,β(ρt ,mt).

Theorem (Bredies, C. , Fanzon, Romero)

Let C := {(ρt ,mt) : Jα,β(ρt ,mt) ≤ 1}. Then

Ext(C ) = (0, 0) ∪ C

where

C :=
{
C (γ, α, β) (dt ⊗ δγ(t), γ̇(t)dt ⊗ δγ(t)) : γ ∈ AC2([0, 1]; Ω)

}
where C (γ, α, β) =

(
α + β

∫ 1

0
|γ̇(t)|2 dt

)−1

.

Extremal points of the Benamou-Brenier energy are pairs of measures
concentrated on absolutely continuous curves in Ω.

On the extremal points of the Benamou-Brenier energy. K. Bredies, M. Carioni, S.
Fanzon, F. Romero, 2019

Marcello Carioni 31th March 2021



Description of DGCG algorithm

Definition (Iterates)

For every γ ∈ AC2([0, 1]; Ω) we call sparse any measure µ = (ρ,m) such
that

µ =
N∑
j=1

cjµγj =
N∑
j=1

cj(dt ⊗ δγj (t), γ̇j(t)dt ⊗ δγj (t)) (2)

for some N ∈ N, cj > 0 and γj ∈ AC2([0, 1]; Ω).

The iterates of the algorithm are sparse measures, µn =
∑Nn

j=1 c
n
j µγn

j

A generalized conditional gradient method for dynamic inverse problems with optimal
transport regularization. K. Bredies, M. Carioni, S. Fanzon, F. Romero, 2020
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Insertion step:

We add to the iterate an extremal point of the ball of the
Benamou-Brenier energy to the iterate µn. The extremal point is
obtained by computing a minimizer to the partially linearized objective
that, defining the dual variable wn

t := Kt(K
∗
t ρ

n
t − ft), is

min
(ρt ,mt)

∫ 1

0

〈ρt ,wn
t 〉M(Ω),C(Ω) dt + Jα,β(ρt ,mt)

= min
(ρt ,mt)∈Ext({Jα,β≤1})

∫ 1

0

〈ρt ,wn
t 〉M(Ω),C(Ω) dt

= min
γ∈AC([0,1];Ω)

(
α + β

∫ 1

0

|γ̇(t)|2 dt
)−1 ∫ 1

0

wn
t (γ(t)) dt , (3)

We reduce the insertion step to a variational problem in AC2([0, 1]; Ω)
that we solve by a multistart gradient descent method.

The next iterate is constructed first by adding to µn the atom (extremal
point) µγ∗ associated to the minimizer of (3) denoted by γ∗.
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Insertion step:

We add to the iterate an extremal point of the ball of the
Benamou-Brenier energy to the iterate µn. The extremal point is
obtained by computing a minimizer to the partially linearized objective
that, defining the dual variable wn

t := Kt(K
∗
t ρ

n
t − ft), is

min
(ρt ,mt)

∫ 1

0

〈ρt ,wn
t 〉M(Ω),C(Ω) dt + Jα,β(ρt ,mt)

= min
(ρt ,mt)∈Ext({Jα,β≤1})

∫ 1

0

〈ρt ,wn
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Coefficient optimization step

We optimize the coefficients of the linear combination

Nn∑
j=1

cnj µγn
j

+ µγ∗

by solving

min
(c1,c2,...,cNn+1)∈RNn+1

+

Gα,β

(
Nn∑
i=1

ciµγn
i

+ cNn+1µγ∗

)
. (4)

This is a quadratic problem, due to the linearity of the Benamou-Brenier
energy on linear combination of extremal points.

Calling (c∗1 , c
∗
2 , . . . , c

∗
Nn+1) a solution of (4) we obtain the next iterate as

µn+1 =
Nn∑
j=1

c∗j µγn
j

+ c∗Nn+1µγ∗

Theorem (Bredies, C., Fanzon, Romero)

Let µn = (ρnt ,m
n
t ) an iterate of the DGCG algorithm. Then µn converges

weakly* to a minimizer of Gα,β with sublinear rate.
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Numerical simulations

We now want to test our DGCG algorithm to reconstruct observations for
the inverse problem

min
(ρt ,mt)

1

2

∫ 1

0

‖Ktρt − ft‖2
Ht

dt + Jα,β(ρt ,mt)

where Jα,β is the Benamou-Brenier energy.

The domain is Ω = [0, 1]2

The observation operators Kt :M(Ω)→ Ht are time dependent
Fourier measurements that at each time detect different sets of
Fourier frequencies of ρt (severely ill-posed).

The data ft is the image by Kt of sparse dynamic measures (with
20% and 60% of noise)
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Reconstructions with 60% of noise:
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Effect of the non-uniqueness in the measure representation:
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Summary of the algorithm and convergence rate
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Summary of the algorithm and convergence rate
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