

Curvature, *Divergence*, and *Confluence* for unsupervised reconstruction of <u>directed vessel trees</u>

Yuri Boykov

joint work with

Reconstructing vessel trees (outline)

- Challenges, basic techniques,
- Curvature ICCV 2015
- Divergence CVPR 2019
- Confluence CVPR 2021

micro-CT vessel volume mouse heart

reconstructed tree structure

Biomedical motivation

High resolution 3D imaging: micro-CT

vascular data from Robarts Research, M. Drangova

most of the vessels are thinner than voxel size

Biomedical motivation

Goal: vascular tree structure

(bifurcation points, angles, connectivity,...)

Biomedical motivation

Goal: vascular tree structure

(bifurcation points, angles, connectivity,...)

resolving near-capillary vessels

Main Challenges:

Noise Ring artefacts Loss of signal at thin vessels (due to *partial voluming*)

Main Challenges:

Noise Ring artefacts Loss of signal at thin vessels (due to *partial voluming*) Loss of signal at bifurcations (due to *Frangi filtering*, more later)

Main Challenges:

Noise Ring artefacts Loss of signal at thin vessels (due to *partial voluming*) Loss of signal at bifurcations (due to *Frangi filtering*, more later) No user assistance (except for one branch or very small trees)

raw data

Preprocessing (data cleaning):

- ring artefact filtering
- tubular structure filtering [Frangi et al, 1998]

Preprocessing (data cleaning):

- ring artefact filtering
- tubular structure filtering [Frangi et al, 1998]

Vessel segmentation:

- thresholding

Frangi-filtered data (zoom-in) higher threshold loses thin vessels lower threshold keeps noise

Preprocessing (data cleaning):

- ring artefact filtering
- tubular structure filtering [Frangi et al, 1998]

Vessel segmentation:

- thresholding

vessel continuation problem regularization

Frangi-filtered data (zoom-in)

lower threshold keeps noise

1D curvature regularization

Frangi output

[D. Marin *et.al. ICCV* 2015] [E. Chesakov 2015] Area (first-order regularization) [Caselles, Kimmel, Sapiro, 1995] [Boykov Kolmogorov, 2003]

Mean curvature

[J.Yi et.al. 2003]

[P. Strandmark et.al. 2011]

[T. Schoenemann et.al. 2012]

[C. Nieuwenhuis et.al. 2014]

Gaussain or min curvature

[?]

Outline

Preprocessing:

- ring artefact filtering
- tubular structure filtering [Frangi et al, 1998]

Smooth "centerline" estimation

- denoising
- local connectivity
- flow direction
- \Rightarrow <u>connectivity graph</u> estimation, a.k.a.

directed Tubular graph

Tree topology estimation (over local connectivity graph):

- shortest path (assumes user-specified end points)
 - variants of minimum spanning tree (MST)
 - minimum arborescence (directed tree)

A

B

Part B

Motivating example:

noisy vessel tangents observations

local vessel orientations from Frangi

(high threshold)

vesselness measure (Frangi)

Motivating example:

clutter, outliers

(low threshold)

vesselness measure (Frangi)

tree growth from seeds (local heuristics) a la "Canny edges" [Aylward et al. 2002]

Our approach: regularize local tangents via curvature

(low threshold)

vesselness measure (Frangi)

implicit curve/surface fitting [Olsson et al CVPR 2012,13]

implicit curve/surface fitting [Olsson et al CVPR 2012,13]

$$E(L) = \sum_{p} \frac{1}{\sigma_p^2} \left\| l_p - \tilde{p} \right\|^2 + \lambda \sum_{p,q \in N} \kappa^2(l_p, l_q)$$

fitting errors

regularization (smooth tangents)

estimate local tangents *l*_p

curvature of implicit curve between two points can be estimated from tangents (under mild assumptions)

curvature estimation [Olsson et al CVPR 2012,13]

One tangent and a point are enough to estimate curvature (assuming curve has constant curvature in between)

curvature estimation [Olsson et al CVPR 2012,13]

One tangent and a point are enough to estimate curvature (assuming curve has constant curvature in-between)

curvature estimation [Olsson et al CVPR 2012,13]

symmetric version using two tangents

```
[Olsson et al CVPR 2012,13]
```

absolute curvature approximation:

$$\int_{p}^{q} |\kappa| \cdot ds \approx 2\alpha \approx \frac{\left\|q - l_{p}\right\| + \left\|p - l_{q}\right\|}{\left\|p - q\right\|} \equiv \kappa(l_{p}, l_{q})$$

squared curvature approximation:

$$\int_{p}^{q} |\kappa|^{2} \cdot ds \approx \frac{\left\|q - l_{p}\right\|^{2} + \left\|p - l_{q}\right\|^{2}}{\|p - q\|^{3}} \equiv \kappa^{2}(l_{p}, l_{q})$$

$$E(L) = \sum_{p} \frac{1}{\sigma_{p}^{2}} \left\| l_{p} - \tilde{p} \right\|^{2} + \lambda \sum_{p,q \in N} \kappa^{2}(l_{p}, l_{q})$$

fitting errors regularization

Curvature regularized centerline fitting

Example of curvature regularization for centerline (tangent) fitting

HPC: GPU accelerated optimization

Inexact Levenberg-Marquardt [Wright and Holt 1985]

- Designed for solving sparse non-linear large least squares problem
- **Requires** efficient sparse matrix algebra implementation
- **Requires** the Jacobian computed at each iteration
- Automatic differentiation

[Chesakov, 2015]

Prior work:

used in stereo and N-view reconstruction [Olsson et al 2012, 13]

Should fit a smooth surface

used in stereo and N-view reconstruction [Olsson et al 2012, 13]

multiple images of object (different view points)

smoothly fit local tangents
 (color = orientation)

- tangent planes instead of tangent lines

 $\sum_{p,q \in N} \kappa^2(l_p, l_q) \text{ approximates mean curvature of surface in 3D}$ instead of basic curvature of 1D curve (in 2D or 3D)

Prior work:

used in stereo and N-view reconstruction [Olsson et al 2012, 13]

unary

Joint fitting and <u>detection</u> [Marin et al ICCV 2015]

$$E(L,X) = \sum_{(i,j)\in N} \kappa^2 (l_i, l_j) x_i x_j + \sum_i \frac{1}{\sigma^2} ||l_i - \widetilde{p}_i||^2 + \sum_i \frac{\lambda_i}{\lambda_i} x_i$$

 $X_i = 1 \text{ or } 0$ (vessel or not)

issues: artifacts at bifurcations

intuition: no flow orientation

towards directed Tubular graphs ...

Artifacts at bifurcation?

unoriented tangents

(binary orientation ambiguity)

oriented tangents

orientated curvature breaks "loops"

However...

two equally good solutions!

WATERLOO

Divergence prior

enforcing consistent flow pattern... divergent (or convergent)

Divergence prior

enforcing consistent flow pattern... divergent (or convergent)

assume constant vector field inside each Voronoi cell

Divergence prior

enforcing consistent flow pattern... divergent (or convergent)

First: how to estimate divergence of a given vector field?

 $\int_{p}^{\epsilon} \int_{q}^{q} \overline{l_{q}}$

$$\nabla \bar{l}_{pq} = \int_{f_{pq}^{\epsilon}} \langle \bar{l}, n_s \rangle \, ds = \frac{\langle \bar{l}_q, pq \rangle - \langle \bar{l}_p, pq \rangle}{|pq|} \cdot |f_{pq}| + o(\epsilon)$$

Divergence = Flux

tangent *l*

(LevenbergMarquardt)

Joint energy (curvature + divergence):

orientation *x* (TRW-s)

 $\bar{l}_p = x_p \cdot l_p$

RSITY OF Finally, constructing (standard) undirected Tubular gran

e.g. KNN graph connecting denoised points $\{p\}$ with edge weights based on...

K=2

Finally, constructing (standard) undirected Tubular graph

Finally, constructing (standard) undirected Tubular graph

(again) a problem at bifurcations

confluence of (oriented) continuous curves

confluence of curves
at (common) point p

$$\alpha'(p) = \lambda \beta'(p)$$
$$\lambda > 0$$

confluence of curves (at all common points)

confluence of (directed) graph arcs

 $\angle(c_{q*}^0, c_{pq}^1) < \epsilon$

Theorem: $\angle(c_{q*}^{0}, c_{pq}^{1}) = \angle(c_{p*}^{0}, c_{qp}^{1})$ (valid in 3D)

confluence of (directed) graph arcs

 $\angle(c_{q*}^0, c_{pq}^1) < \epsilon$

related to **co-circularity** (2D) [Pierre Parent, Steven Zucker - TPAMI 1989] ^{q,p}

confluence depends on directions

(directed) generalization of co-circularity [Pierre Parent, Steven Zucker - TPAMI 1989] ^{q,p}

Constructing confluent directed Tubular graph

Constructing confluent directed Tubular graph

Practicalities:

For efficiency on large 3D data,

- Frangi output (dominant eigen vector) **initializes** tangents l_p
- initial binary orientation variables x_p are random
- for now, drop detection variables (too slow)

- loose thresholding, non-maxima suppression reduces the number of data points

Estimated vascular tree structure

