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Reconstructing vessel trees (outline)

- Challenges, basic techniques, 

- Curvature regularization

- Divergence (aorta or vein)

- Confluence at bifurcations

micro-CT vessel volume
mouse heart reconstructed tree structure

- ICCV 2015
- CVPR 2019
- CVPR 2021



Biomedical motivation

High resolution 3D imaging: micro-CT

vascular data from Robarts Research, M. Drangova

585 x 525 x 892 voxels

most of the vessels are thinner than voxel size



Biomedical motivation

Raw Data Tree Structure

Goal: vascular tree structure
(bifurcation points, angles, connectivity,…)



Raw Data
(zoom-in)

Tree Structure
(zoom-in)

resolving near-capillary vessels

Biomedical motivation

Goal: vascular tree structure 
(bifurcation points, angles, connectivity,…)



Main Challenges:

Noise
Ring artefacts
Loss of signal at thin vessels  (due to partial voluming)



Noise
Ring artefacts
Loss of signal at thin vessels  (due to partial voluming)
Loss of signal at bifurcations (due to Frangi filtering, more later)

Main Challenges:



Noise
Ring artefacts
Loss of signal at thin vessels  (due to partial voluming)
Loss of signal at bifurcations (due to Frangi filtering, more later)  
No user assistance    (except for one branch or very small trees)

A

B

Main Challenges:



raw data

Basic techniques

Preprocessing (data cleaning):

- ring artefact filtering
- tubular structure filtering  [Frangi et al, 1998]

analyze

Hessian
of intensities

around p

𝑝

vesselness
measure

direction 
(binary ambiguity)

diameter

Why?

A: bifurcations
are not tubular



Basic techniques

Preprocessing (data cleaning):

- ring artefact filtering
- tubular structure filtering  [Frangi et al, 1998]

Frangi-filtered dataRaw micro-CT data

Looks easy for segmentation?

thresholding?



Basic techniques

Preprocessing (data cleaning):

- ring artefact filtering
- tubular structure filtering  [Frangi et al, 1998]

Vessel segmentation:

- thresholding

higher threshold 
loses thin vessels

lower threshold 
keeps noise

Frangi-filtered data 
(zoom-in)



Basic techniques

Preprocessing (data cleaning):

- ring artefact filtering
- tubular structure filtering  [Frangi et al, 1998]

Vessel segmentation:

- thresholding

higher threshold 
loses thin vessels

lower threshold 
keeps noise

vessel continuation problem
regularization

Frangi-filtered data 
(zoom-in)



B

A
shortest paths
is not an option

MST
what graph?

(continuity / connectivity)

(vessel representation?)

Skeletonization
[Sylvain Bouix et.al. 2005]

Regularizing what?

centerline detection volumetric segmentation

1D curvature regularization

[J.Yi et.al. 2003]

[P. Strandmark et.al. 2011]

[C. Nieuwenhuis et.al. 2014]

[T. Schoenemann et.al. 2012]

[D. Marin et.al. ICCV 2015]
[E. Chesakov 2015]

Mean curvature

Gaussain or min curvature

[?]

surface 
regularization

centerline 
regularization

Frangi output

Area (first-order regularization)

[Boykov Kolmogorov, 2003]

[Caselles, Kimmel, Sapiro, 1995]



(vessel representation?)

MAT
[Kaleem Siddiqi et.al. 2008]

Skeletonization
[Sylvain Bouix et.al. 2005]

Regularizing what?

centerline detection volumetric segmentation

surface 
regularization

centerline 
regularization



Preprocessing:

- ring artefact filtering
- tubular structure filtering [Frangi et al, 1998]

Smooth “centerline” estimation
- denoising
- local connectivity       

Tree topology estimation (over local connectivity graph):

- shortest path (assumes user-specified end points)
- variants of minimum spanning tree (MST)

Outline

 connectivity graph estimation, a.k.a. 

Tubular graph

A

B

C

- minimum arborescence (directed tree)

- flow direction

directed



(high threshold)

local vessel orientations from Frangi

vesselness measure (Frangi) 

Motivating example:

noisy vessel tangents observations

Part B



Motivating example:

(low threshold)vesselness measure (Frangi) 

clutter, outliers



tree growth from seeds (local heuristics) a la “Canny edges” 
[Aylward et al. 2002]

Our approach:  regularize local tangents via curvature

(low threshold)vesselness measure (Frangi) 



Our prior work:

𝐸 𝐿 =෍

𝑝

1

𝜎𝑝
2 𝑙𝑝 − ෤𝑝

2
+ 𝜆 ෍

𝑝,𝑞∈𝑁

𝜅2(𝑙𝑝, 𝑙𝑞)

implicit curve/surface fitting [Olsson et al CVPR 2012,13]

estimate
local tangents lp

lp

෤𝑝

fitting errors

noisy point
observation

p

෤𝑝

unknown
smooth curve

denoised 
point 

unknown
tangent lp

regularization
(smooth tangents)



Our prior work:

𝐸 𝐿 =෍

𝑝

1

𝜎𝑝
2 𝑙𝑝 − ෤𝑝

2
+ 𝜆 ෍

𝑝,𝑞∈𝑁

𝜅2(𝑙𝑝, 𝑙𝑞)

implicit curve/surface fitting [Olsson et al CVPR 2012,13]

fitting errors regularization
(smooth tangents)

curvature of implicit curve 
between two points

can be estimated from tangents 
(under mild assumptions)

estimate
local tangents lp

lp

෤𝑝



curvature estimation [Olsson et al CVPR 2012,13]

One tangent and a point  are enough to estimate curvature 
(assuming curve has constant curvature in between)

Our prior work:

p

q

ql



curvature estimation [Olsson et al CVPR 2012,13]

One tangent and a point  are enough to estimate curvature 
(assuming curve has constant curvature in-between)

Our prior work:

p

q

ql

α

2α

𝛼 ≈
𝑝 − 𝑙𝑞

𝑝 − 𝑞

O



𝛼 ≈
𝑝 − 𝑙𝑞 + 𝑞 − 𝑙𝑝

2 𝑝 − 𝑞

curvature estimation [Olsson et al CVPR 2012,13]

symmetric version using two tangents

Our prior work:

p

pl

α
p

q

ql

α

2α

O



Our prior work:

absolute curvature approximation:

න
𝑝

𝑞

𝜅 ⋅ 𝑑𝑠 ≈ 2𝛼 ≈
𝑞 − 𝑙𝑝 + 𝑝 − 𝑙𝑞

𝑝 − 𝑞
≡ 𝜅(𝑙𝑝, 𝑙𝑞)

squared curvature approximation:
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fitting errors regularization

[Olsson et al CVPR 2012,13]



Curvature regularized centerline fitting

Example of curvature regularization for centerline (tangent) fitting



HPC:  GPU accelerated optimization

Inexact Levenberg-Marquardt [Wright and Holt 1985]

• Designed for solving sparse non-linear large least squares problem

• Requires efficient sparse matrix algebra implementation

• Requires the Jacobian computed at each iteration

• Automatic differentiation 

Vascular tree estimation from micro-CT images 

using GPU-accelerated centerline regularization

[Chesakov, 2015]



Prior work:

used in stereo and N-view reconstruction [Olsson et al 2012, 13]

multiple images of object
(different view points)

noisy 3D points

Should fit a smooth surface



Prior work:

multiple images of object
(different view points)

smoothly fit local tangents
(color = orientation)

used in stereo and N-view reconstruction [Olsson et al 2012, 13]

- approximates mean curvature of surface in 3D      
instead of basic curvature of 1D curve (in 2D or 3D)

෍

𝑝,𝑞∈𝑁

𝜅2 𝑙𝑝, 𝑙𝑞

- tangent planes instead of tangent lines



Prior work:

NOTE:
top of Middlebury stereo (2017)
is based on this curvature model

used in stereo and N-view reconstruction [Olsson et al 2012, 13]



Joint fitting and detection [Marin et al ICCV 2015] 

Vascular tree estimation from micro-CT images 

using GPU-accelerated centerline regularization

𝐸 𝐿, 𝑋 = ෍

𝑖,𝑗 ∈𝑁

𝜅2 𝑙𝑖 , 𝑙𝑗 𝑥𝑖𝑥𝑗 +෍

𝑖

1

𝜎2
𝑙𝑖 − ෥𝑝𝑖

2 +෍

𝑖

𝜆𝑖𝑥𝑖

Xi =  1 or 0 
(vessel or not)

unary 
potentials

mean-field approximation
gives probabilities in [0,1] for X



Limitations 

issues:   artifacts at bifurcations

intuition:   no flow orientation

towards directed Tubular graphs…



Artifacts at bifurcation?

𝑙𝑝

𝑝

unoriented tangents
(binary orientation ambiguity)

oriented tangents

ഥ𝑙𝑝

robust 
oriented curvature

low energy high energy low energy 
when consistent directions



Oriented curvature

orientated curvature 
breaks “loops”



Orientation ambiguity

However…

two equally good solutions!

divergent
bifurcation

convergent 
bifurcation



Oriented curvature limitations
oriented tangents at convergence

inconsistent
bifurcations



Illustration of vessel flow pattern

mixed
vessel tree

divergent
vessel tree

(AORTA)

convergent
vessel tree

(VEIN)



lq
lp

p q

enforcing consistent flow pattern… divergent (or convergent)

Divergence prior

First: how to 
estimate divergence 

of a given vector field?



lq
lp

p q

enforcing consistent flow pattern… divergent (or convergent)

Divergence prior

First: how to 
estimate divergence 

of a given vector field?

assume constant vector field inside each Voronoi cell



enforcing consistent flow pattern… divergent (or convergent)

Divergence prior

First: how to 
estimate divergence 

of a given vector field?

Divergence     =            Flux

lp

lq

p q



Optimization framework

Joint energy (curvature + divergence):

Estimate tangent 
orientation 𝒙

(TRW-s)

Re-estimate 
tangent 𝒍

(LevenbergMarquardt)

Initial input (Frangi
output)

Output 

Until converges



Convergence curve



Results comparison

oriented curvature only

with divergence prior



Finally, constructing (standard) undirected Tubular graph
e.g. KNN graph connecting denoised points 𝑝 with 𝐞𝐝𝐠𝐞 𝐰𝐞𝐢𝐠𝐡𝐭𝐬 based on…

𝑝

𝑞

Euclidean distance

𝑙𝑝

𝑙𝑞
average

circular arc length

K=2 K=3 K=6
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Finally, constructing (standard) undirected Tubular graph
e.g. KNN graph connecting denoised points 𝑝 with 𝐞𝐝𝐠𝐞 𝐰𝐞𝐢𝐠𝐡𝐭𝐬 based on…

𝑝

𝑞

Euclidean distance

𝑙𝑞
average

circular arc length

𝑙𝑝

Minimum 
Spanning 

Tree



(again) a problem at bifurcations

A

BC

undirected arcs 
can’t represent

flow orientation

shorter arc BC gives
“non-smooth” flow

 need constraint 
on flow smoothness

 need 
directed graph arcs



confluence of (oriented) continuous curves

p

confluence of curves
at (common) point p

confluence of curves
(at all common points)



confluence of (directed) graph arcs

Theorem:                                                 (valid in 3D) 



related to co-circularity (2D) 
[Pierre Parent, Steven Zucker - TPAMI 1989]

confluence of (directed) graph arcs



confluence depends on directions

(directed) generalization of co-circularity 
[Pierre Parent, Steven Zucker - TPAMI 1989]

non-confluent confluent



confluent
arc weights

Constructing    confluent   directed Tubular graph
e.g. KNN graph connecting denoised points 𝑝 with 𝐞𝐝𝐠𝐞 𝐰𝐞𝐢𝐠𝐡𝐭𝐬 based on…

𝑝

𝑞
𝑙𝑞

directed
circular arc length

extrapolated 
flow

𝑙𝑝

K=6

geodesic 
arc weights

K=6



e.g. KNN graph connecting denoised points 𝑝 with 𝐞𝐝𝐠𝐞 𝐰𝐞𝐢𝐠𝐡𝐭𝐬 based on…

𝑝

𝑞
𝑙𝑞

directed
circular arc length

extrapolated 
flow

𝑙𝑝

minimum 
arborescence

Constructing    confluent   directed Tubular graph

Minimum 
Spanning 

Tree



Practicalities:

For efficiency on large 3D data, 

- Frangi output (dominant eigen vector) initializes tangents lp

- initial binary orientation variables xp are random 

- for now, drop detection variables (too slow)

- loose thresholding, non-maxima suppression reduces the number of  
data points



Our solution: curvature regularized centerline fitting

Vascular tree estimation from micro-CT images 

using GPU-accelerated centerline regularization

Tubular measure filtering 
[Frangi, et al.]

Flow estimation 
(curvature + divergence)

Minimum Arborescence on
(confluent) directed Tubular Graph

Non maxima suppression

Raw data
MIP
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Our solution: curvature regularized centerline fitting

Vascular tree estimation from micro-CT images 

using GPU-accelerated centerline regularization

Tubular measure filtering 
[Frangi, et al.]

Flow estimation 
(curvature + divergence)

Minimum Arborescence on
(confluent) directed Tubular Graph
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Our solution: curvature regularized centerline fitting

Vascular tree estimation from micro-CT images 

using GPU-accelerated centerline regularization

Tubular measure filtering 
[Frangi, et al.]

Flow estimation 
(curvature + divergence)

Minimum Arborescence on
(confluent) directed Tubular Graph

Non maxima suppression

Raw data
Tangents (vessel radius coded)



Our solution: curvature regularized centerline fitting

Vascular tree estimation from micro-CT images 

using GPU-accelerated centerline regularization

Tubular measure filtering 
[Frangi, et al.]

Flow estimation 
(curvature + divergence)

Minimum Arborescence on
(confluent) directed Tubular Graph

Non maxima suppression

Raw data
Estimated vascular tree structure


