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- Challenges, basic techniques,
- Curvature - ICCV 2015

- Divergence - CVPR 2019

- Confluence - CVPR 2021

micro-CT vessel volume

mouse heart reconstructed tree structure
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Biomedical motivation % WATERLGO

High resolution 3D imaging: micro-CT

585 x 525 x 892 voxels

vascular data from Robarts Research, M. Drangova

most of the vessels are thinner than voxel size
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Biomedical motivation % WATERLOO

Goal: vascular tree structure
(bifurcation points, angles, connectivity,...)

. Tree Structure
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Biomedical motivation % WATERLOO

Goal: vascular tree structure
(bifurcation points, angles, connectivity,...)

Raw Data
(zoom-in)

resolving near-capillary vessels
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Main Challenges:

Noise
Ring artefacts
Loss of signal at thin vessels (due to partial voluming)
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Main Challenges:

Loss of signal at bifurcations (due to Frangi filtering, more later)




No user assistance
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Main Challenges:

(except for one branch or very small trees)
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Basic techniques

Preprocessing (data cleaning):

- tubular structure filtering [Frangi et al, 1998]

A: bif ’cations
analyze are not tubular
Hessian

of intensities
vesselness d|rect|on diameter
around p

measure

(blnary ambiguityD

raw data
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Basic techniques

Preprocessing (data cleaning):

- tubular structure filtering [Frangi et al, 1998]

Frangi-filtered
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Basic techniques

Preprocessing (data cleaning):

- tubular structure filtering [Frangi et al, 1998]

Vessel segmentation:

- thresholding

Frangi-filtered data
(zoom-in) loses thin vessels keeps noise
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Basic techniques

Preprocessing (data cleaning):

- tubular structure filtering [Frangi et al, 1998]

Vessel segmentation:

vessel continuation problem
regularization

Frangi-filtered data
(zoom-in) loses thin vessels keeps noise



. o B L emsn o
RegUIar|Z|ng What? 2 WATERLOO

centerline (vessel representation?) surface

regularization regularization

Skeletonization
[Sylvain Bouix et.al. 2005]

1D curvature regularization Area (first-order regularization)
[Caselles, Kimmel, Sapiro, 1995]

[D. Marin et.al. ICCV 2015]
[E. Chesakov 2015]

[Boykov Kolmogorov, 2003]

Mean curvature
[J.Yi et.al. 2003]
[P. Strandmark et.al. 2011]
[T. Schoenemann et.al. 2012]
[C. Nieuwenhuis et.al. 2014]

Frangi output

Gaussain or min curvature

[?]
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Regularizing what?

centerline (vessel representation?) surface

MAT
[Kaleem Siddiqi et.al. 2008]

Skeletonization
[Sylvain Bouix et.al. 2005]




Outline

-

Preprocessing:

- ring artefact filtering
- tubular structure filtering [Frangi et al, 1998]

\_
/
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Smooth “centerline” estimation
- denoising
- local connectivity
- flow direction

—> connectivity graph estimation, a.k.a.

directed Tubular graph

AN

/

/Tree topology estimation (over local connectivity graph):

N

o ho ) ified-end-points|
- variants of minimum spanning tree (MST)
- minimum arborescence (directed tree)

N

>
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Motivating example:

noisy vessel tangents observations
local vessel orientations from Frangi

vesselness measure (Frangi) (high threshold)
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Motivating example:

clutter, outliers
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vesselness measure (Frangi) (low threshold)
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tree growth from seeds (local heuristics) a la “Canny edges”
[Aylward et al. 2002]

Our approach: regularize local tangents via curvature

RN
R ¢

A WA

vesselness measure (Frangi)
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Our prior work: %Y WATERLGO

implicit curve/surface fitting [oisson et al cver 2012,13]

1
E(L) = Z?HIP AP+ 2 ) K2y
D p

P.qEN

fitting errors regularization

(smooth tangents)

estimate
local tangents |

unknown
tangent |,

~S

noisy point p
observation

p denoised

point

unknown
smooth curve




UNIVERSITY OF

Our prior work: %Y WATERLGO

implicit curve/surface fitting [oisson et al cver 2012,13]

1 12
FEW =) Sl —pl"+2
p P p,qEN

fitting errors regularization

(smooth tangents)

estimate
local tangents |

curvature of implicit curve
between two points
can be estimated from tangents
(under mild assumptions)




Our prior work:

curvature estimation [oisson et al cvPr 2012,13]

q

One tangent and a point are enough to estimate curvature
(assuming curve has constant curvature in between)




Our prior work:

curvature estimation [oisson et al cvPr 2012,13]

q

One tangent and a point are enough to estimate curvature
(assuming curve has constant curvature in-between)



Our prior work:

curvature estimation [oisson et al cvPr 2012,13]

=1l +lla — 5|
2|lp — qll

symmetric version using two tangents



Our prior work:

[Olsson et al CVPR 2012,13]
absolute curvature approximation:

qulicl-dszz ”q_lﬁll?'-l_lclﬁ_l“ k(L 1)
squared curvature approximation
q _ _
L k|2 - ds ~ lq lp”|2|9 _"‘J||1|93 l ” = 12(1,, 1)
—

E<L>=Z 2l =l 42 )

D,qEN

fitting errors regularization




Curvature regularized centerline fitting % WATERLOO

Example of curvature regularization for centerline (tangent) fitting




HPC: GPU accelerated optimization & WATERLOO
Inexact Levenberg-Marquardt [Wright and Holt 1985]
Designed for solving sparse non-linear large least squares problem
Requires efficient sparse matrix algebra implementation
Requires the Jacobian computed at each iteration

Automatic differentiation

[Chesakov, 2015]



Prior work: % WATERLGO

used in stereo and N-view reconstruction [Olsson et al 2012, 13]
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Prior work: % WATERLGO

used in stereo and N-view reconstruction [Olsson et al 2012, 13]

multiple images of object
(different view points)

smoothly fit local tangents
- tangent planes instead of tangent lines (color = orientation)

- Kz(lp, lq) approximates mean curvature of surface in 3D
p,qEN instead of basic curvature of 1D curve (in 2D or 3D)



Prior work:
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used in stereo and N-view reconstruction [Olsson et al 2012, 13]
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NOTE:
top of Middlebury stereo (2017)
is based on this curvature model
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Joint fitting and detection [Marin et al ICCV 2015]

unary
potentials
2 1 ~ 112
E(L X) = z K (li; lj)xixj +z;||li — pill +z Xi
(i,j)EN i L

(vessel or not)

mean-field approximation
gives probabilities in [0,1] for X
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issues: artifacts at bifurcations

intuition: no flow orientation

towards directed Tubular graphs...
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Artifacts at bifurcation? % WATERLGO

unoriented tangents oriented ta ngents
(binary orientation ambiguity)

6(0)° l_
p
‘ ‘} , ]200

x, € {—1,1}

robust
oriented curvature

,.——\/\ /A/‘\\

low energy

low ener ) . )
gy when consistent directions
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orientated curvature
breaks “loops”

-B



UNIVERSITY OF

WATERLOO

However...
@6
divergent convergent
bifurcation bifurcation

two equally good solutions!
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inconsistent
bifurcations

oriented tangents at convergence @~
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divergent v

vessel tree
(AORTA)

mixed
vessel tree

convergent
vessel tree
(VEIN)
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Divergence prior

enforcing consistent flow pattern... divergent (or convergent)

First: how to
estimate divergence

\ / of a given vector field?
| |
p ek
¥ q



Dlvergence pnor % WATERLOO
enforcing consistent flow pattern... divergent (or convergent)

First: how to
estimate divergence

\ / of a given vector field?
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assume constant vector field inside each Voronoi cell
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Divergence prior & warerL00

enforcing consistent flow pattern... divergent (or convergent)

First: how to
estimate divergence

of a given vector field?

c
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'|qu| + O(E)

Divergence = Flux
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Joint energy (curvature + divergence):

?".-l

E(])

D=L +y D RogTp1y)
P

(P.QeEN

Initial input (Frangi
output)

Until converges

Estimate tangent Re-estimate

orientation x
(TRW-s)

v

tangent [
(LevenbergMarquardt)

A




Energy Value

x 100000

S = o W s U Y

1

2 3 4 5 6 7 8 91011121314 15
[teration
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oriented curvature only

with divergence prior
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Finally, constructing (standard) undirected TubuIar?’!ﬁT)Ef"iLoo

e.g. KNN graph connecting denoised points {p} with edge weights based on...

average l
circular arclength <9 q

Euclidean distance
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Finally, constructing (standard) undirected TubuIar?’ﬁ’f)EFiLoo

e.g. KNN graph connecting denoised points {p} with edge weights based on...

average l
circular arc length <9 q

Euclidean distance

geodesic
arc weights
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Finally, constructing (standard) undirected TubuIar?’!ﬁT)EFiLoo

e.g. KNN graph connecting denoised points {p} with edge weights based on...

average l
circular arclength <9 q

Euclidean distance
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(again) a problem at bifurcations

IAB| + [[AC| >> [|AB[| + [| BC]|
C\\ //B

shorter arc BC gives
“non-smooth” flow

undirected arcs
can’t represent
flow orientation

= S

(11}
— need constraint A = need
on flow smoothness directed graph arcs
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confluence of (oriented) continuous curves

P
v
Qv
confluence of curves confluence of curves
at (common) point p (at all common points)

o' (p) = A\3'(p)

A>0
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WATE RLOO

confluence of (directed) graph arcs
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WATE RLOO

confluence of (directed) graph arcs

related to co-circularity (2D) ,/‘;
[Pierre Parent, Steven Zucker - TPAMI 1989]
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confluence depends on directions

confluent

51

non-confluent

51

(directed) generalization of co-circularity /
[Pierre Parent, Steven Zucker - TPAM| 1989] |



[ ° W UNIVERSITY OF
Constructing confluent directed Tubular graph™™"-°
e.g. KNN graph connecting denoised points {p} with edge weights based on...

directed

circular arc Iength(q\.q\

extrapolated
flow

confluent
arc weights

geodesic
arc weights
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Constructing confluent directed Tubular graph™™"-°

e.g. KNN graph connecting denoised points {p} with edge weights based on...
directed l

circular arc Iength(q\.q\

extrapolated
flow
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Practicalities: %) WATERLOO

For efficiency on large 3D data,
- Frangi output (dominant eigen vector) initializes tangents Ip
- initial binary orientation variables X are random
- for now, drop detection variables (too slow)

- loose thresholding, non-maxima suppression reduces the number of
data points
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Our solution: curvature regularized centerline fittings wateriLoo

Raw data

Tubular measure filtering
[Frangi, et al.]

Non maxima suppression

Flow estimation
(curvature + divergence)

Minimum Arborescence on
(confluent) directed Tubular Graph
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Our solution: curvature regularized centerline fitting? waTerLoo

Raw data

Flow estimation
(curvature + divergence)

Minimum Arborescence on
(confluent) directed Tubular Graph
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Our solution: curvature regularized centerline fitting> waterLoo

Raw data

Tubular measure filtering
[Frangi, et al.]

Flow estimation
(curvature + divergence)

Minimum Arborescence on
(confluent) directed Tubular Graph




Our solution: curvature regularized centerline fitting? waTerLoo

Raw data Tangents (vessel radius coded)

Tubular measure filtering
[Frangi, et al.]

Non maxima suppression

curvature divergence

Minimum Arborescence on
(confluent) directed Tubular Graph
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Our solution: curvature regularized centerline fitting? waTerLoo

Estimated vascular tree structure
Raw data

Tubular measure filtering
[Frangi, et al.]

Non maxima suppression

Flow estimation




