

*Curvature***,** *Divergence***, and** *Confluence* **for unsupervised reconstruction of directed vessel trees**

Yuri Boykov

joint work with

Reconstructing vessel trees (outline)

- **- Challenges, basic techniques,**
- **Curvature regularization - ICCV 2015**
- **Divergence CVPR 2019**
- **Confluence CVPR 2021**

micro-CT vessel volume

mouse heart reconstructed tree structure

Biomedical motivation

High resolution 3D imaging: **micro-CT**

vascular data from Robarts Research, M. Drangova

most of the vessels are thinner than voxel size

Biomedical motivation

Goal: **vascular tree structure**

(bifurcation points, angles, connectivity,…)

Biomedical motivation

Goal: **vascular tree structure**

(bifurcation points, angles, connectivity,…)

resolving near-capillary vessels

Main Challenges:

Noise Ring artefacts Loss of signal at thin vessels (due to *partial voluming*)

Main Challenges:

Noise Ring artefacts Loss of signal at thin vessels (due to *partial voluming*) **Loss of signal at bifurcations** (due to *Frangi filtering*, more later)

Main Challenges:

Noise Ring artefacts Loss of signal at thin vessels (due to *partial voluming*) **Loss of signal at bifurcations** (due to *Frangi filtering*, more later) **No user assistance** (except for one branch or very small trees)

raw data

Preprocessing (data cleaning):

- ring artefact filtering
- tubular structure filtering [**Frangi** et al, 1998]

Preprocessing (data cleaning):

- ring artefact filtering
- tubular structure filtering [**Frangi** et al, 1998]

Vessel segmentation:

- **thresholding**

Frangi-filtered data (zoom-in)

higher threshold loses thin vessels

lower threshold keeps noise

Preprocessing (data cleaning):

- ring artefact filtering
- tubular structure filtering [**Frangi** et al, 1998]

Vessel segmentation:

- **thresholding**

vessel **continuation** problem **regularization**

Frangi-filtered data (zoom-in)

lower threshold keeps noise

1D curvature regularization

Frangi output

[D. Marin *et.al. ICCV* 2015] [E. Chesakov 2015]

Area (first-order regularization) [Boykov Kolmogorov, 2003] [Caselles, Kimmel, Sapiro, 1995]

Mean curvature

[J.Yi *et.al.* 2003]

[P. Strandmark *et.al.* 2011]

[T. Schoenemann *et.al.* 2012]

[C. Nieuwenhuis *et.al.* 2014]

Gaussain or min curvature

Outline

Part B

Motivating example:

noisy **vessel tangents** observations

local vessel orientations from Frangi

(high threshold)

vesselness measure (Frangi)

Motivating example:

clutter, outliers

vesselness measure (Frangi) (low threshold)

tree growth from seeds (local heuristics) a la "Canny edges" [Aylward et al. 2002]

Our approach: regularize local tangents via curvature

vesselness measure (Frangi) and the controller controller the controller controller (low threshold)

implicit curve/surface fitting [Olsson et al CVPR 2012,13]

implicit curve/surface fitting [Olsson et al CVPR 2012,13]

$$
E(L) = \sum_{p} \frac{1}{\sigma_p^2} ||l_p - \tilde{p}||^2 + \lambda \sum_{p,q \in N} \widehat{\kappa^2(l_p, l_q)}
$$

fitting errors regularization (smooth tangents)

estimate local **tangents** *l^p*

curvature of implicit curve between two points can be **estimated from tangents** (under mild assumptions)

curvature estimation [Olsson et al CVPR 2012,13]

One tangent and a point are enough to estimate curvature (assuming curve has constant curvature in between)

curvature estimation [Olsson et al CVPR 2012,13]

One tangent and a point are enough to estimate curvature (assuming curve has constant curvature in-between)

curvature estimation [Olsson et al CVPR 2012,13]

symmetric version using two tangents

absolute curvature approximation:

$$
\int_{p}^{q} |\kappa| \cdot ds \approx 2\alpha \approx \frac{\|q - l_p\| + \|p - l_q\|}{\|p - q\|} \equiv \kappa(l_p, l_q)
$$

squared curvature approximation:

$$
\int_{p}^{q} |\kappa|^{2} \cdot ds \approx \frac{\|q - l_{p}\|^{2} + \|p - l_{q}\|^{2}}{\|p - q\|^{3}} \equiv \kappa^{2}(l_{p}, l_{q})
$$

$$
E(L) = \sum_{p} \frac{1}{\sigma_p^2} ||l_p - \tilde{p}||^2 + \lambda \sum_{p,q \in N} \kappa^2(l_p, l_q)
$$
fitting errors

Curvature regularized centerline fitting

Example of curvature regularization for centerline (tangent) fitting

HPC: GPU accelerated optimization

Inexact Levenberg-Marquardt [Wright and Holt 1985]

- Designed for solving **sparse** non-linear large least squares problem
- **Requires** efficient sparse matrix algebra implementation
- **Requires** the Jacobian computed at each iteration
- Automatic differentiation

[Chesakov, 2015]

Prior work:

used in stereo and N-view reconstruction [Olsson et al 2012, 13]

Should fit a smooth surface

used in stereo and N-view reconstruction [Olsson et al 2012, 13]

multiple images of object (different view points)

smoothly fit local tangents (color = orientation)

- **tangent planes** instead of **tangent lines**

 $-\sum_{k} \kappa^2(l_p, l_q)$ approximates **mean curvature of surface** in 3D instead of basic curvature of 1D curve (in 2D or 3D) \rightarrow $p,q \in N$ $\kappa^2\big(l_p,l_q$

Prior work:

used in stereo and N-view reconstruction [Olsson et al 2012, 13]

unary

Joint fitting and detection [Marin et al ICCV 2015]

$$
E(L, X) = \sum_{(i,j)\in N} \kappa^2 (l_i, l_j) x_i x_j + \sum_i \frac{1}{\sigma^2} ||l_i - \widetilde{p}_i||^2 + \sum_i \lambda_i x_i^{\text{potentials}}
$$

 $X_i = 1$ or 0 (vessel or not)

issues: artifacts at bifurcations

intuition: no flow orientation

towards **directed Tubular graphs**…

Artifacts at bifurcation?

unoriented tangents

(binary orientation ambiguity)

oriented tangents

orientated curvature breaks "loops"

However…

two equally good solutions!

UNIVERSITY OF

Divergence prior

enforcing **consistent flow pattern… divergent** (or convergent)

Divergence prior

enforcing **consistent flow pattern… divergent** (or convergent)

assume constant vector field inside each Voronoi cell

Divergence prior

enforcing **consistent flow pattern… divergent** (or convergent)

First: how to **estimate divergence** of a given vector field?

$$
\nabla \bar{l}_{pq} = \int_{f_{pq}^{\epsilon}} \langle \bar{l}, n_s \rangle ds = \frac{\langle \bar{l}_q, pq \rangle - \langle \bar{l}_p, pq \rangle}{|pq|} \cdot |f_{pq}| + o(\epsilon)
$$

Divergence = Flux

Re-estimate

Until converges

tangent (LevenbergMarquardt)

Joint energy (curvature + divergence):

Estimate tangent orientation (TRW-s)

 $\bar{l}_p = x_p \cdot l_p$

RSITY OF Finally, constructing (standard) **undirected Tubular graph**

ERSITY OF Finally, constructing (standard) **undirected Tubular graph**

ERSITY OF Finally, constructing (standard) **undirected Tubular graph**

(again) **a problem at bifurcations**

confluence of (oriented) continuous curves

confluence of curves at (common) **point p**

$$
\alpha'(p) = \lambda \beta'(p)
$$

$$
\lambda > 0
$$

confluence of curves (at all common points)

confluence of (directed) graph arcs

 $\angle(c_{q*}^0, c_{pq}^1) < \epsilon$

Theorem: $\angle(c_{a*}^0, c_{pa}^1) = \angle(c_{p*}^0, c_{qp}^1)$ (valid in 3D)

confluence of (directed) graph arcs

 $\angle(c_{q*}^0, c_{pq}^1) < \epsilon$

related to **co-circularity** (2D) [Pierre Parent, Steven Zucker - TPAMI 1989] ${q,p}$

confluence depends on directions

(directed) generalization of co-circularity [Pierre Parent, Steven Zucker - TPAMI 1989]

UNIVERSITY OF Constructing **confluent directed Tubular graph**

UNIVERSITY OF Constructing **confluent directed Tubular graph**

Practicalities:

For efficiency on large 3D data,

- Frangi output (dominant eigen vector) **initializes** tangents *l^p*
- initial binary orientation variables x_p are random
- for now, drop detection variables (too slow)

- loose thresholding, non-maxima suppression reduces the number of data points

