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Shape reconstruction problem
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Shape reconstruction for N=3

Boundary of a physical object ¢——
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Shape reconstruction for N large
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Shape reconstruction problem

Shape = smooth d-submanifold of RY

| Sampling T/ﬂpﬂ

Point set P C RY Mesh of P

Reconstruction \
{ ) %

algorithm J

e > Homeomorphism

INPUT ouTPUT

[ Goal: Find conditions under which the output is a triangulation of the shape j




Shape reconstruction problem

Shape = smooth d-submanifold of RY

| Sampling ]/" Q

i Homotopy eq.

e Homeomorphism

Point set P C RY Mesh of P
_,_,.[ 5;2‘;35;:;‘1”‘&0“ ]-% ;‘ b W[Simpliﬁcation}""‘?
“\M\ 4",/
INPUT Alpha(P, p), Cech(P, p), Rips(P, p) OuTPUT

[ Goal: Find conditions under which the output is a triangulation of the shape j




Manifold reconstruction problem

Different strategies:

[A. & Lieutier 2015][A., Lieutier & Salinas 2012]

7 Direct approach

[Boissonnat, Dyer, Ghosh, Lieutier, Wintraecken 2019][Boissonnat, Dyer, Ghosh 2017]
[Boissonnat, Ghosh 2010][Boissonnat, Flétotto 2004]

Through energy minimization

[Chen, Holst 2011][Alliez, Cohen-Steiner, Yvinec, Desbrun 2005]
[Rakovic, Grieder & Jones 2004][Musin 2003]



Manifold reconstruction problem

M: a smooth d-submanifold of RY
P: a finite point set of M _ E

How to triangulate M given as input P?




Manifold reconstruction problem

M: a d-flat of RY wauae,
P: a finite point set of M_ ™

How to triangulate M given as input P?

Construct the Delaunay complex of P



Delaunay complex

P: a finite point set of R

10

Del(P) ={o |0 # 0 C P and 3 a d-sphere through o that does not enclose any point of P }

Non-generic point set

&

Generic point set P:

No (d + 2) points of P lie on a common (d — 1)-sphere

No degenerate simplices of P on 9 Conv(P)

~

J

4

C Del(P) triangulation of the convex hull of P )




Delaunay complex

Where is the Delaunay complex?
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Delaunay complex
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Where is the Delaunay complex?

==

=

Delaunay complex

{0’ (optimizes many functionals)




Delaunay energy

T triangulation of Conv(P)
E40(T) = volume between T’ and paraboloid & = {(x, ||z|]?) | z € R%}.

T IRJA-:.
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Delaunay energy

T triangulation of Conv(P)
E40(T) = volume between T’ and paraboloid & = {(x, ||z|]?) | z € R%}.
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el(P) = tsziangulatign"'af
( 10x§vé"r‘~eonve:§,c hull-of
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Delaunay energy

T triangulation of Conv(P)
E40(T) = volume between T’ and paraboloid & = {(x, ||z|]?) | z € R%}.

T le-n. | T IRd-n.

el(P) = tsziangulatign"'af
( 10x§vér‘~eonve:§§ hull of P
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Delaunay energy

T triangulation of Conv(P)

E40(T) = volume between T’ and paraboloid & = {(x, ||z|]?) | z € R%}.

L D/el(\P) = triangulation of
T = lift of T )
P it o Y lower convex hull of P

T Del(P)

GD generia = CDel(P) = the triangulation of Conv(P) with smallest Delaunay energy)
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Delaunay energy

T triangulation of Conv(P)

E40(T) = volume between T’ and paraboloid & = {(x, ||z|]?) | z € R%}.

a’

wael(ab) = ¢la — b|)? wael(abe) = 15 area(abe) [|ja — b]|2 + [|b — ¢||* + ||lc — al|?]
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Delaunay energy

T triangulation of Conv(P)
E40(T) = volume between T’ and paraboloid & = {(x, ||z|]?) | z € R%}.

— Z volume between ¢ and P

d-simplex oc€T

wael(ab) = ¢la — b|)? wael(abe) = 15 area(abe) [|ja — b]|2 + [|b — ¢||* + ||lc — al|?]
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Delaunay energy

T triangulation of Conv(P)

E40(T) = volume between T’ and paraboloid & = {(x, ||z|]?) | z € R%}.

— Z volume between ¢ and P

g, _—

d-simplex oc€T T
1
Delaunay weight of o = (d+1)(d+2) vol(c) Z leng@
e edge of o

intrinsegp expression [Chen, Holst 2011]

b

IR a o .

wael(ab) = ¢la — b|)? wael(abe) = 15 area(abe) [|ja — b]|2 + [|b — ¢||* + ||lc — al|?]



14

Delaunay energy

T triangulation of Conv(P)
I volume between T' and paraboloid & = {(z, ||z||?) | z € R?}.

Z volume between ¢ and P

| o
d-simplex oc€T ‘T
1
: _ 1 length(e)?
Delaunay weight of o = (d+1)(d+2) vol(o) Z eng@
e edge of o
1
can be computed for any soup 7T of d-simplices in R intrinsec expression [Chen, Holst 2011]
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Delaunay complex

Del(P)

Simplicial complex with vertex set P

— T

Geometric characterization of elements Variational characterization

(P generic) (P sgeneric)
! !

CTriangulation of COHV(P)) CMinimizes Delaunay energy)
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Delaunay complex

A Ry <A
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Simplicial complex with vertex set P

Geometric characterization of elements Variational characterization

CTriangulation of %QP-)) CMinimizes Delaunay energy)

N
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Road map

@ Define a Delaunay complex generalization

@ Show that indeed triangulates manifold under some conditions

@ Define a minimization problem

@ Show that indeed solution = Delaunay complex generalization

Weighted

tangentiel
Delaunay
complex

N
[Boissonnat, Ghosh,
Dyer, Wintraecken,
Fl6totto, Chazal, Yvinec]

Unweighted
tangentiel
Delaunay
complex

Delflat
complex

Solution of a
minimization
problem

K\%‘M» /’
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Unweighted tangentiel Delaunay complex

M: a smooth d-submanifold of RY

P: a sample of M
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Unweighted tangentiel Delaunay complex

M: a smooth d-submanifold of RY

P: a sample of M
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Unweighted tangentiel Delaunay complex

M: a smooth d-submanifold of RY

P: a sample of M
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Unweighted tangentiel Delaunay complex

M: a smooth d-submanifold of RY

P: a sample of M




Unweighted tangentiel Delaunay complex

M: a smooth d-submanifold of RY

P: a sample of M
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Unweighted tangentiel Delaunay complex

M: a smooth d-submanifold of RY

P: a sample of M
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Unweighted tangentiel Delaunay complex

M: a smooth d-submanifold of RY

P: a sample of M
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Unweighted tangentiel Delaunay complex

M: a smooth d-submanifold of RY

P: a sample of M

Starp a(v', p) = {7" € Del(mr , m(P N BV, p))) | v' € Conv(r")}

Prestar p.u(v,p) = {7 € POBW,p) | 7, m(7) € Starp (v, )} /

24
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Unweighted tangentiel Delaunay complex

M: a smooth d-submanifold of RY

P: a sample of M

Starp a(v', p) = {7" € Del(mr , m(P N BV, p))) | v' € Conv(r")}

Prestar p.u(v,p) = {7 € POBW,p) | 7, m(7) € Starp (v, )} /

TangDel (P, p) = U Prestarp aq (v, p)
veP
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Unweighted tangentiel Delaunay complex

M: a smooth d-submanifold of RY

P: a sample of M

Starp a(v', p) = {7" € Del(mr , m(P N BV, p))) | v' € Conv(r")}

Prestarp i (v,p) ={T C PN B(U/, p) | WT,I)/M(T) € Starp a (U/, p)}

TangDel (P, p) = U Prestarp aq (v, p)
veP

&') Construction involves computing | P| small d-dimensional Delaunay complexes
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Unweighted tangentiel Delaunay complex

M: a smooth d-submanifold of RY

P: a sample of M

Starp a(v', p) = {7" € Del(mr , m(P N BV, p))) | v' € Conv(r")}

Prestarp i (v,p) ={T C PN B(U/, p) | WT,I)/M(T) € Starp a (U/, p)}

TangDel (P, p) = U Prestarp aq (v, p)
veP

Simplices are p-small

&') Construction involves computing | P| small d-dimensional Delaunay complexes



Reach and projection
|

\ ve P

@ DMedial axis of M = set of points with at least 2 closest points onto M
® Reach(M) = d(M, Medial axis of M)

25



Reach and projection

@ DMedial axis of M = set of points with at least 2 closest points onto M
® Reach(M) = d(M, Medial axis of M)

We assume P C M®" and scale p such that n + p < Reach(M)

k& Vo C P psmall, m : Conv(o) — M well-defined
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Unweighted tangentiel Delaunay complex

TangDel \((P, p) = U Prestarp aq (v, p)
veP

Not necessarily a triangulation
of the submanifold!

a, b, c and d almost cocircular

00
\é Prestar of @ and Prestar of b do not agree on triangles abe, abd, acd, bed!



How to ensure that triangulation?

Pertube P

<

CP “sufficiently” nice sample of M) )(P “sufficiently” generic at scale p

FALSE

o)

TRUE

28

J

C P satisfies structural properties at scale p )

V

CTangDel M (P, p) triangulates M)

End




How to ensure that triangulation?

Pertube P <

FALSE

C P (g, p)-nice sample of M \ )(P “sufficiently” generic at scale p?\ TRUE > End

J

2
P e-net (W) -accurate
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How to ensure that triangulation?

Pertube P <

FALSE

C P (e, p)-nice sample of M ) )( P (T, ve)-generic at scale p? ) e > End

V p-small d-simplices ¢ C P:

Tx Di
£ o is T-thick WM

2 9
()'6 " o is (we)-protected at scale p

£xCe
0, S =

2
P e-net (#(M)) -accurate

U Vq € Tat o (PN B(co,p)) \ o
d(q,S(o)) > ve



How to ensure that triangulation?

Pertube P

<

C P (e, p)-nice sample of M )

2
P e-net (#(M)) -accurate

D

Set scale parameter: p = \e with A > 6

FALSE

)( P (T, ve)-generic at scale p? \ TRUE

J

o is T-thick

V p-small d-simplices ¢ C P:

A R

o is (ve)-protected at scale p

Vq € Tat o (PN B(co,p)) \ o
d(q,S(o)) > ve

End

Lovacz Local Lemma — d u, T, v, C such that for

e
Reach(M)

<C,

the algorithm terminates




How to ensure that triangulation?

Pertube P

<

C P (e, p)-nice sample of M )

\

FALSE

)( P (T, ve)-generic at scale p

N

TRUE

31

)

For - h( ) small enough

&

C P satisfies structural properties at scale p )

End




How to ensure that triangulation?

Pertube P <

FALSE

C P (e, p)-nice sample of M

31

J J

|

For h( ) small enough

&

C P satisfies structural properties at scale p )

VYm e M

7, m injective on P N B(m, p)

V d-simplices o

{Prestarp a((2, p) } zcconv(s) are in agreement at scale p

Starp aq(m, p) triangulates T, M around m

=

\ )( P (T, ve)-generic at scale p \ 0E >

End




How to ensure that triangulation?

Pertube P -

FALSE

C P (e, p)-nice sample of M

31

J J

|

For h( ) small enough

&

C P satisfies structural properties at scale p )

VYm e M

7, m injective on P N B(m, p)

Starp aq(m, p) triangulates T, M around m

V d-simplices o

{Prestarp a((2, p) } zcconv(s) are in agreement at scale p

d
£ IR :
TangDel (P, p) t lates M
/ @ / Cang el \((P, p) triangulates )

\ )( P (T, ve)-generic at scale p \ 0E >

End




Prestars in agreement

Prestars of o are in agreement at scale p if
Vz,y € Conv(o)

o € Prestarp pq(z, p) <= o € Prestarp pm(y, p)

32



Prestars in agreement

Prestars of o are in agreement at scale p if
Vz,y € Conv(o)

o € Prestarp pq(z, p) <= o € Prestarp pm(y, p)
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Prestars in agreement

Prestars of o are in agreement at scale p if
Vz,y € Conv(o)

o € Prestarp pq(z, p) <= o € Prestarp pm(y, p)

o projects onto a Delaunay simplex either in all “nearby” tangent planes or in
none of them.

N

1/ We can work in the tangent plane that is most convenient for us!

34



Triangulation of the manlfold

o [
°
Prestarp aq(m, p) \ o . .
"
{o € TangDel \,(P,p) | mam (o) covers m} \‘\‘\. /.//
\_.__/

Starp g (m, p)

® We prove that D = | TangDel (P, p)| d-manifold and 7 : D — M injective.

® Domain invariance theorem =— 7wy : D — M open

(w m : | TangDel (P, p)| = M homeomorphism)

35
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Unweighted tangential Delaunay complex

TangDel (P, p)

AR

) 7 (“ é‘.
ARSI RPN
SIS

\!A"V

Geometric characterization of elements Variational characterization

P samples M “sufficently” P samples M “sufficently”
and “sufficiently* generic and “sufficiently* generic

C Triangulation of M ) CMinimizes Delaunay energy)




Finding a triangulation by minimization

P: a finite sample of a smooth d-submanifold M of RY

& i

Find a set of d-simplices T that e minimizes Eqc(T) = Z wael (0)
o d-simplex of T

e subject to: “I'is a mesh with vertex set P

L that triangulates AM” J

Why using Delaunay weights?

How to transform this into a convex problem?



Finding a path by minimization

a graph G = (V, F)

Find a path v that e minimizes F(vy) = Z w(e)
e edge of ~v

e subject to: v connects a to b




Finding a path by minimization

a graph G = (V, F)

“&W
Q

~

Find a path v that e minimizes F(vy) = Z w(e)
e edge of ~v

e subject to: v connects a to b

—

. The shortest path is ab (assuming ab € G).



Finding a path by minimization

a graph G = (V, F)

Find a path v that e minimizes F(vy) = Z w(e)
e edge of ~v

e subject to: v connects a to b

—

c c
Pythagorean theorem @b 4 b« @ b



Finding a path by minimization

a graph G = (V, F)

w(e) = length(e)3

The Delaunay weight

« R

Find a path v that e minimizes F(vy) = Z w(e)
e edge of ~v

e subject to: v connects a to b

\ _

The shortest path starts going through “denser” parts of the point cloud!




Finding a path by minimization

a graph G = (V, F)

w(e) = weight of e

~

Find a path v that e minimizes F(vy) = Z w(e)
e edge of ~v

e subject to: v connects a to b

—

Dijkstra’s algorithm solves the problem in O(|E| + |V |log|V]).



Enlarging the search space

the set of paths the set of 1-chains with coefficients in R
L e S —
v v
finite vector space

e give each edge e an arbitrary orientation:

e I-chain Y= Z v(e)e
/’ e edge ? M‘\\
vector coordinate element of the basis
e boundary operator O: linear operator such that de = vepq(€) — Vstart(€)
c 2 2 1
= — —[eb] + =[ab
2/3 2/3 7 = zlad + 3lebl + 3lad
a > b _ 2 a2 ot o
/3 8’7—3(6 a)+3(b c)+3(b a)=b—a

43



Reformulating minimization problem

a graph G

AU“ -
= <

"/-\‘;;‘“ % -

N\
) % \,,
Lo norm

« R

Find a 1-chain v that e minimizes FE(v) = Z w(e)y(e)?

e edge of ~

w(e) = weight of e

e subject to: 0y =b—a

\—_ _

If a = b, the solution is a harmonic form v and can be computed using
1 1 1 1 1
W2y € ker(W20q4105, W2 +W™20504W™2).

The solution spreads everywhere!



Physical interpretation
a graph Gé@ctrical circu@

edge e

45

w(e) = weight of e

( Resistance)

2/ 4 >
>

7 at junction‘v\\\__ ) A

at junction a
current entering = 0
current leaving = 1

— : . N N
; 7" ( current entering = current leaving \
’ (nodal rule)

< curl:entj Joule heating

( at junction b ‘_
| current entering = 1 |
\ current leaving = 0

~

\_

L norm
N J
Find a 1-chain 7y that e minimizes F(v) = Z w(e) 7(6)2 e
e edge of v e

e subject to: 0y =0—a

| nodal rule)

If a = b, the solution is a harmonic form v and can be computed using

W3y € ker(W3204110%, W3 + W™2959,W3).

The solution spreads everywhere!



Reformulating minimization problem

a graph G

w(e) = weight of e

a R

Find a 1-chain v that e minimizes FE(v) = Z w(e) |y(e)

e edge of ~

e subject to: 0y =b—a

_ _

Convex problem whose solution can be computed by linear programming (using
slack variables)

The solution is expected to be sparse! Not necessarily a path!

46
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K: a simplicial complex with vertex set P
Mz

4 N (D 4
| X
(DA XSRS
NP IA: Tl VXN BV
NN XSGR 2N
N =E WavanN ey SEINTY gy
MAASEIRN AR A AL
ORISR <L~
NS N
NXEX T2
4)‘:\714,':"‘é"

r Find a d-chain v of K that e minimizes Eqe(7)

Reformulating minimization problem

N

[ =

o

loadm(’y) = Z 'Y(a)]-rM(Conv(a))(m)

To )
e subject to: 9y =0 -EMM@EE/}

\
S waalo) ()
o d-simplex of K

B ~
loadn, (v) =1 *“( “normalization” )

Convex optimization problem

Least-norm problem whose constraint functions 0 and load,,, are linear



Our result

K: a simplicial complex with vertex set P

N
\\\ m\\

i3 4» ‘ Ty
\JS “ A ’
P— ::4" ‘E?:ZV./{{“A\\#“ “' /" " 1’,"/,‘?5 "é‘\
NN NS AN
ST N S
g[:“rékgsw “";\( U «v q' / (',)‘1"
e
W\ T /N \ 52 .
’!A\\‘v'g'«, \\lh\?/\\ '\\\3 /”‘" AN /
\.’&)}l@\\ N «') ‘V RS

A/ ' *
KPS
.
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load,,,

Zv

71'/\/1 (Conv(a)) (m)

r Find a d-chain v of K that e minimizes E4e(7)

e subject to: 9y =0

—

2.

o d-simplex of K

load,,, (v) =1

wael (o) [7(0)]| ﬁ

_/

\ which is TangDel \, (P, p).

( Theorem. There exists a constant C' such that if P is (e, u)-nice sample of M \
(T, ve)-generic at scale p and TangDel \ (P, p) C K C Cech(P, p)

then for Reach(M) < C, the solution is unique and defines a triangulation of M

J
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Idea of the proof

~

r Find a d-chain v of K that e minimizes Fge(7) = Z waet(a) [y(o)]

o d-simplex of K

e subject to: 9y =0

L load,,, () =1 J

Wdel(0) = volume between 6 and P A @

1 2
= AT+ 2) vol(o) Z length(e)

(intrinsec expression)

e edge of o

- Power ()

= / — Power, (z) dz
x€Conv (o)
o) K

]
]
]
)
a2 >

R(s)

where Power, (x) = power distance of 2 to smallest circumsphere of ¢ = ||z — Z(0)||? — R(0)?



Idea of the proof

Euclidean case

~del = chain defined by Del(P)

e iff Y = Vdel

= Zwmin(0)|7min(0)| e iémlnfa)}|7(0)| < deel(g)h(g” = Ega(v)

7 g / o

J— g : J—

Volur;: between ™ / ” volume between ,
LowConv(P) anijj) i\ LowConv (P) = / .
x€Conv (o)

\. above ¢ and P

\"" A L RO SAAATTBI
. —

Ydel

= min (— Power,(z))
o d-simplex

x € Conv(o)




Idea of the proof

Manifold case

Tmng'])d %(P.f’)




Idea of the proof

Manifold case

CP “sufficiently” generic at scale p)

Q

a € TangDel \,(P, p)

¥

€ Del(mag o (P N B(ca, p)

J
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Idea of the proof

Manifold case

CP “sufficiently” generic at scale p)

Q

a € TangDel \,(P, p)

¥

€ Del(mag o (P N B(ca, p)

J
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Idea of the proof

Manifold case L

a € TangDel \,(P, p)

CP “sufficiently” generic at scale p) @

o E Del(ﬁaﬁa(Pm B(Comp)))

0

ol Py &)

Tomg'])d %(P’P)

Ydel = chain defined by TangDel \,(P, p)

e iff v = vge

(Baa(aa)) = @)@ () emin(ah(@)] < P waa(@lr(@) = Faal)
= : e

/ 7
'

e e

volume betvveel?l\\g / .
K\\OWCOHV and 73 o (Conv(o))

= min (— Power, (y))
o d-simplex
y € Conv(o)

Tm(Yy) = T ()




Experiments

Rips complex
(382 vertices, E(deg) = 17.1)

Rips complex
(2000 vertices, E(deg) = 17.1)

Rips complex
(542 vertices, F(deg) = 17.5)

Harmonic form
(L2-minimization)

XWAVA\Vv AN l\ \
S ALY,
SO A

-&Y \Vl ‘\\rbvff Vl 7
m‘\; N 1

Q

TSR
SV, 7l
%{;{éjww
NoAATZ s i
Jl NI
) !'AVAY%W‘

Solution
(L1-minimization)
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Conclusion

Two papers in preparation

Future work
« Algorithmic aspects

* Anisotropic energy

Thank you for your attention!
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