Meshing manifolds by weighted £1-norm minimization

Dominique Attali GIPSA-lab, CNRS, Grenoble

Joined work with André Lieutier
Dassault systèmes

Shape reconstruction problem

Shape reconstruction for N=3

Shape reconstruction for N large

Shape reconstruction problem

Goal: Find conditions under which the output is a triangulation of the shape

Shape reconstruction problem

Goal: Find conditions under which the output is a triangulation of the shape

Manifold reconstruction problem

Different strategies:

Through simplification (collapses, contractions,...)

[A. & Lieutier 2015][A., Lieutier & Salinas 2012]

Direct approach

[Boissonnat, Dyer, Ghosh, Lieutier, Wintraecken 2019][Boissonnat, Dyer, Ghosh 2017] [Boissonnat, Ghosh 2010][Boissonnat, Flötotto 2004]

Through energy minimization

[Chen, Holst 2011][Alliez, Cohen-Steiner, Yvinec, Desbrun 2005] [Rakovic, Grieder & Jones 2004][Musin 2003]

Manifold reconstruction problem

How to triangulate $\mathcal M$ given as input $\mathbf P$?

Manifold reconstruction problem

How to triangulate $\,\mathcal{M}\,$ given as input $\,\mathrm{P}$?

P: a finite point set of \mathbb{R}^d

 $Del(P) = \{ \sigma \mid \emptyset \neq \sigma \subseteq P \text{ and } \exists \text{ a } d\text{-sphere through } \sigma \text{ that does not enclose any point of } P \}$

Non-generic point set

Generic point set P:

No (d+2) points of P lie on a common (d-1)-sphere

No degenerate simplices of P on $\partial \operatorname{Conv}(P)$

Del(P) triangulation of the convex hull of P

Where is the Delaunay complex?

Where is the Delaunay complex?

T: triangulation of Conv(P)

 $E_{\text{del}}(T) = \text{volume between } \hat{T} \text{ and paraboloid } \mathscr{P} = \{(x, ||x||^2) \mid x \in \mathbb{R}^d\}.$

T: triangulation of Conv(P)

 $E_{\text{del}}(T) = \text{volume between } \hat{T} \text{ and paraboloid } \mathscr{P} = \{(x, ||x||^2) \mid x \in \mathbb{R}^d\}.$

T: triangulation of Conv(P)

 $E_{\text{del}}(T) = \text{volume between } \hat{T} \text{ and paraboloid } \mathscr{P} = \{(x, ||x||^2) \mid x \in \mathbb{R}^d\}.$

P generic

 \Longrightarrow

Del(P) = the triangulation of Conv(P) with smallest Delaunay energy

T: triangulation of Conv(P)

 $E_{\text{del}}(T) = \text{volume between } \hat{T} \text{ and paraboloid } \mathscr{P} = \{(x, ||x||^2) \mid x \in \mathbb{R}^d\}.$

$$P$$
 generic $) \Longrightarrow$

Del(P) = the triangulation of Conv(P) with smallest Delaunay energy

T: triangulation of Conv(P)

 $E_{\text{del}}(T) = \text{volume between } \hat{T} \text{ and paraboloid } \mathscr{P} = \{(x, ||x||^2) \mid x \in \mathbb{R}^d\}.$

T: triangulation of Conv(P)

$$E_{\text{del}}(T) = \text{volume between } \hat{T} \text{ and paraboloid } \mathscr{P} = \{(x, ||x||^2) \mid x \in \mathbb{R}^d\}.$$

$$= \sum_{d\text{-simplex } \sigma \in T} \text{volume between } \hat{\sigma} \text{ and } \mathcal{P}$$

$$\omega_{\text{del}}(abc) = \frac{1}{12} \operatorname{area}(abc) \left[\|a - b\|^2 + \|b - c\|^2 + \|c - a\|^2 \right]$$

T: triangulation of Conv(P)

 $E_{\text{del}}(T) = \text{volume between } \hat{T} \text{ and paraboloid } \mathscr{P} = \{(x, ||x||^2) \mid x \in \mathbb{R}^d\}.$

$$= \sum_{d\text{-simplex } \sigma \in T} \text{volume between } \hat{\sigma} \text{ and } \mathcal{P}$$

Delaunay weight of
$$\sigma = \left(\frac{1}{(d+1)(d+2)}\operatorname{vol}(\sigma)\sum_{e \text{ edge of }\sigma}\operatorname{length}(e)^2\right)$$

intrinsec expression [Chen, Holst 2011]

$$\omega_{\rm del}(ab) = \frac{1}{6} ||a - b||^3$$

$$\omega_{\text{del}}(abc) = \frac{1}{12} \operatorname{area}(abc) \left[||a - b||^2 + ||b - c||^2 + ||c - a||^2 \right]$$

T: triangulation of Conv(P)

 $E_{\text{del}}(T)$ = volume between \hat{T} and paraboloid $\mathscr{P} = \{(x, ||x||^2) \mid x \in \mathbb{R}^d\}.$

$$= \sum_{d\text{-simplex }\sigma \in T} \text{volume between } \hat{\sigma} \text{ and } \mathcal{P}$$

Delaunay weight of
$$\sigma = \left(\frac{1}{(d+1)(d+2)}\operatorname{vol}(\sigma)\sum_{e \text{ edge of }\sigma}\operatorname{length}(e)^2\right)$$

can be computed for any soup T of d-simplices in \mathbb{R}^N

intrinsec expression [Chen, Holst 2011]

$$\omega_{\rm del}(ab) = \frac{1}{6} ||a - b||^3$$

$$\omega_{\text{del}}(abc) = \frac{1}{12} \operatorname{area}(abc) \left[||a - b||^2 + ||b - c||^2 + ||c - a||^2 \right]$$

Del(P)

Simplicial complex with vertex set P

Geometric characterization of elements

Variational characterization

Delaunay complex generalization

Road map

- Define a Delaunay complex generalization
- 2 Show that indeed triangulates manifold under some conditions
- 3 Define a minimization problem
- Show that indeed solution = Delaunay complex generalization

Weighted tangentiel Delaunay complex Unweighted tangentiel Delaunay complex

Delflat complex

Solution of a minimization problem

[Boissonnat, Ghosh, Dyer, Wintraecken, Flötotto, Chazal, Yvinec]

$$\operatorname{TangDel}_{\mathcal{M}}(P,\rho) = \bigcup_{v \in P} \operatorname{Prestar}_{P,\mathcal{M}}(v,\rho)$$

Reach and projection

- Medial axis of $\mathcal{M} = \text{set of points with at least 2 closest points onto } \mathcal{M}$
- Reach(\mathcal{M}) = $d(\mathcal{M}$, Medial axis of \mathcal{M})

Reach and projection

- Medial axis of $\mathcal{M} = \text{set of points with at least 2 closest points onto } \mathcal{M}$
- Reach $(\mathcal{M}) = d(\mathcal{M}, \text{Medial axis of } \mathcal{M})$

We assume $P \subseteq \mathcal{M}^{\oplus \eta}$ and scale ρ such that $\eta + \rho < \text{Reach}(\mathcal{M})$

 $\forall \sigma \subseteq P \ \rho\text{-small}, \ \pi_{\mathcal{M}} : \operatorname{Conv}(\sigma) \to \mathcal{M} \text{ well-defined}$

Unweighted tangentiel Delaunay complex

TangDel_{$$\mathcal{M}$$} $(P, \rho) = \bigcup_{v \in P} \operatorname{Prestar}_{P, \mathcal{M}}(v, \rho)$

Not necessarily a triangulation of the submanifold!

Prestar of a and Prestar of b do not agree on triangles abc, abd, acd, bcd!

Set scale parameter: $\rho = \lambda \varepsilon$ with $\lambda > 6$

Lovácz Local Lemma $\implies \exists \mu, T, \nu, C \text{ such that for } \frac{\varepsilon}{\operatorname{Reach}(\mathcal{M})} < C, \text{ the algorithm terminates}$

Prestars in agreement

Prestars of σ are in agreement at scale ρ if

$$\forall x, y \in \text{Conv}(\sigma)$$

$$\sigma \in \operatorname{Prestar}_{P,\mathcal{M}}(x,\rho) \iff \sigma \in \operatorname{Prestar}_{P,\mathcal{M}}(y,\rho)$$

Prestars in agreement

Prestars of σ are in agreement at scale ρ if

$$\forall x, y \in \text{Conv}(\sigma)$$

$$\sigma \in \operatorname{Prestar}_{P,\mathcal{M}}(x,\rho) \iff \sigma \in \operatorname{Prestar}_{P,\mathcal{M}}(y,\rho)$$

Prestars in agreement

Prestars of σ are in agreement at scale ρ if

$$\forall x, y \in \text{Conv}(\sigma)$$

 $\sigma \in \operatorname{Prestar}_{P,\mathcal{M}}(x,\rho) \iff \sigma \in \operatorname{Prestar}_{P,\mathcal{M}}(y,\rho)$

 σ projects onto a Delaunay simplex either in all "nearby" tangent planes or in none of them.

We can work in the tangent plane that is most convenient for us!

Triangulation of the manifold

- We prove that $\mathcal{D} = |\operatorname{TangDel}_{\mathcal{M}}(P, \rho)|$ d-manifold and $\pi_{\mathcal{M}} : \mathcal{D} \to \mathcal{M}$ injective.
- Domain invariance theorem $\implies \pi_{\mathcal{M}} : \mathcal{D} \to \mathcal{M}$ open

 $\pi_{\mathcal{M}}: |\operatorname{TangDel}_{\mathcal{M}}(P,\rho)| \to \mathcal{M}$ homeomorphism

Unweighted tangential Delaunay complex

Geometric characterization of elements

Variational characterization

P samples \mathcal{M} "sufficently" and "sufficiently" generic

Minimizes Delaunay energy

Finding a triangulation by minimization

P: a finite sample of a smooth d-submanifold \mathcal{M} of \mathbb{R}^N

Find a set of d-simplices T that \bullet minimizes $E_{\text{del}}(T) = \sum_{\sigma \text{ d-simplex of } T} \omega_{\text{del}}(\sigma)$

• subject to: "T is a mesh with vertex set P that triangulates \mathcal{M} "

Why using Delaunay weights?

How to transform this into a convex problem?

a graph G = (V, E)

 $\omega(e)=$ weight of e

Find a path γ that

- minimizes $E(\gamma) = \sum_{e \text{ edge of } \gamma} \omega(e)$
 - subject to: γ connects a to b

a graph G = (V, E)

 $\omega(e) = \text{length}(e)$

- Find a path γ that \bullet minimizes $E(\gamma) = \sum \omega(e)$ e edge of γ
 - subject to: γ connects a to b

The shortest path is ab (assuming $ab \in G$).

a graph G = (V, E)

 $\omega(e) = \text{length}(e)^2$

- Find a path γ that \bullet minimizes $E(\gamma) = \sum \omega(e)$ e edge of γ
 - subject to: γ connects a to b

Pythagorean theorem

a graph G = (V, E)

The Delaunay weight

- Find a path γ that \bullet minimizes $E(\gamma) = \sum \omega(e)$ e edge of γ
 - subject to: γ connects a to b

The shortest path starts going through "denser" parts of the point cloud!

a graph G = (V, E)

- Find a path γ that \bullet minimizes $E(\gamma) = \sum \omega(e)$ e edge of γ
 - subject to: γ connects a to b

Dijkstra's algorithm solves the problem in $O(|E| + |V| \log |V|)$.

Enlarging the search space

- give each edge e an arbitrary orientation:
- 1-chain $\gamma = \sum_{e \text{ edge}} \gamma(e)e$ vector coordinate element of the basis
- boundary operator ∂ : linear operator such that $\partial e = v_{\text{end}}(e) v_{\text{start}}(e)$

$$\gamma = \frac{2}{3}[ac] + \frac{2}{3}[cb] + \frac{1}{3}[ab]$$

$$\partial \gamma = \frac{2}{3}(c-a) + \frac{2}{3}(b-c) + \frac{1}{3}(b-a) = b-a$$

Reformulating minimization problem

a graph G

 L_2 norm

- Find a 1-chain γ that minimizes $E(\gamma) = \sum_{\omega(e)} \omega(e) \gamma(e)^2$ e edge of γ
 - subject to: $\partial \gamma = b a$

If a = b, the solution is a harmonic form γ and can be computed using $W^{\frac{1}{2}}\gamma \in \ker(W^{\frac{1}{2}}\partial_{d+1}\partial_{d+1}^{t}W^{\frac{1}{2}} + W^{-\frac{1}{2}}\partial_{d}^{t}\partial_{d}W^{-\frac{1}{2}}).$

The solution spreads everywhere!

Physical interpretation

If a = b, the solution is a harmonic form γ and can be computed using $W^{\frac{1}{2}}\gamma \in \ker(W^{\frac{1}{2}}\partial_{d+1}\partial_{d+1}^tW^{\frac{1}{2}} + W^{-\frac{1}{2}}\partial_d^t\partial_dW^{-\frac{1}{2}})$.

The solution spreads everywhere!

Reformulating minimization problem

 L_1 norm

Find a 1-chain γ that

- minimizes $E(\gamma) = \sum_{e \text{ edge of } \gamma} \omega(e) |\gamma(e)|$
 - subject to: $\partial \gamma = b a$

Convex problem whose solution can be computed by linear programming (using slack variables)

The solution is expected to be sparse! Not necessarily a path!

Reformulating minimization problem

K: a simplicial complex with vertex set P

$$load_m(\gamma) = \sum_{\alpha} \gamma(\alpha) \mathbf{1}_{\pi_{\mathcal{M}}(Conv(\alpha))}(m)$$

Find a d-chain γ of K that \bullet minimizes $E_{\text{del}}(\gamma) = \sum \omega_{\text{del}}(\sigma) |\gamma(\sigma)|$ σ d-simplex of K

> • subject to: $\partial \gamma = 0$ $load_{m_0}(\gamma) = 1$ "normalization"

Least-norm problem whose constraint functions ∂ and $load_{m_0}$ are linear

Convex optimization problem

Our result

K: a simplicial complex with vertex set P

$$\operatorname{load}_{m}(\gamma) \stackrel{\Delta}{=} \sum_{\alpha} \gamma(\alpha) \mathbf{1}_{\pi_{\mathcal{M}}(\operatorname{Conv}(\alpha))}(m)$$

- Find a d-chain γ of K that \bullet minimizes $E_{\text{del}}(\gamma) =$ $\sum \omega_{ ext{del}}(\sigma) |\gamma(\sigma)|$ σ d-simplex of K
 - subject to: $\partial \gamma = 0$ $load_{m_0}(\gamma) = 1$

Theorem. There exists a constant C such that if P is (ε, μ) -nice sample of \mathcal{M} $(T, \nu \varepsilon)$ -generic at scale ρ and $\operatorname{TangDel}_{\mathcal{M}}(P, \rho) \subseteq K \subseteq \operatorname{Cech}(P, \rho)$,

then for $\frac{\varepsilon}{\operatorname{Reach}(\mathcal{M})} < C$, the solution is unique and defines a triangulation of \mathcal{M} which is $\operatorname{TangDel}_{\mathcal{M}}(P, \rho)$.

- Find a d-chain γ of K that \bullet minimizes $E_{\text{del}}(\gamma) = \sum_{\sigma \text{ d-simplex of } K} \omega_{\text{del}}(\sigma) |\gamma(\sigma)|$
 - subject to: $\partial \gamma = 0$

$$load_{m_0}(\gamma) = 1$$

 $\omega_{\rm del}(\sigma) \stackrel{\triangle}{=}$ volume between $\hat{\sigma}$ and \mathcal{P}

$$= \frac{1}{(d+1)(d+2)} \operatorname{vol}(\sigma) \sum_{e \text{ edge of } \sigma} \operatorname{length}(e)^{2}$$
(intrinsec expression)

$$= \int_{x \in \operatorname{Conv}(\sigma)} -\operatorname{Power}_{\sigma}(x) \, dx$$

where $\operatorname{Power}_{\sigma}(x) = \operatorname{power} \operatorname{distance} \operatorname{of} x$ to smallest circumsphere of $\sigma = \|x - Z(\sigma)\|^2 - R(\sigma)^2$

Euclidean case

 $\gamma_{\text{del}} = \text{chain defined by } \text{Del}(P)$

$$E_{\mathrm{del}}(\gamma_{\mathrm{del}}) = \sum_{\sigma} \omega_{\min}(\sigma) |\gamma_{\min}(\sigma)| \stackrel{\leq}{\leq} \sum_{\sigma} \omega_{\min}(\sigma) |\gamma(\sigma)| \stackrel{\leq}{\leq} \sum_{\sigma} \omega_{\mathrm{del}}(\sigma) |\gamma(\sigma)| = E_{\mathrm{del}}(\gamma)$$

$$volume \ \mathrm{between}$$

$$Low\mathrm{Conv}(\hat{P}) \ \mathrm{and} \ \mathcal{P}$$

$$volume \ \mathrm{between}$$

$$Low\mathrm{Conv}(\hat{P}) \ \mathrm{above} \ \sigma \ \mathrm{and} \ \mathcal{P}$$

$$volume \ \mathrm{between}$$

$$Low\mathrm{Conv}(\hat{P}) \ \mathrm{and} \ \mathcal{P}$$

Manifold case

Manifold case

P "sufficiently" generic at scale ρ

Manifold case

P "sufficiently" generic at scale ρ

 $\gamma_{\text{del}} = \text{chain defined by TangDel}_{\mathcal{M}}(P, \rho)$

$$E_{\mathrm{del}}(\gamma_{\mathrm{del}}) = \sum_{\sigma} \omega_{\min}(\sigma) |\gamma_{\min}(\sigma)| \leq \sum_{\sigma} \omega_{\min}(\sigma) |\gamma(\sigma)| \leq \sum_{\sigma} \omega_{\mathrm{del}}(\sigma) |\gamma(\sigma)| = E_{\mathrm{del}}(\gamma)$$

$$volume \ \mathrm{between}$$

$$Low\mathrm{Conv}(\hat{P}) \ \mathrm{and} \ \mathcal{P}$$

$$\int_{x \in \varphi(\mathrm{Conv}(\sigma))} h(x) dx$$

Experiments

Rips complex (382 vertices, E(deg) = 17.1)

Rips complex (2000 vertices, E(deg) = 17.1)

Harmonic form

Rips complex (542 vertices, E(deg) = 17.5)

Conclusion

Two papers in preparation

Future work

- Algorithmic aspects
- Anisotropic energy

Thank you for your attention!